
1

CHAPTER 1

INTRODUCTION

The computing world of the late 20th and early 21st centuries have been

dominated by Microsoft’s Windows operating systems (95, 98, NT, 2000, XP), taking

control of around 90% of the consumer marketplace. Alternative operating systems

such as Linux or Mac OS often have similarly matched software offerings which

Windows holds, whether it be web browsers, e-mail clients, or productivity programs.

However, there is one area where the Windows-based realm reigns – games. Generally,

only the most successful games get ported to Linux or Mac. Even then, there is no

guarantee of this happening. When the top games cost millions of dollars to produce,

there is little incentive to spend further money and time on minority platforms.

Much of the difficulty of porting games from Windows to other systems is

caused by developers using Microsoft-branded tools such as DirectX or the Windows

Application Programming Interface (API). When porting, a developer essentially has to

translate the game from one language to another operating system’s APIs. PIGE is

intended to greatly reduce the struggle involved when porting by removing as many

system-dependent APIs as possible and relying on open technologies such as OpenGL

(Open Graphics Library), OpenAL (Open Audio Library), and the C language, one of

the most popular programming languages of the past 30 years.

PIGE follows after the Java methodology: write once, run anywhere. The

intended purpose of PIGE is to provide the necessary platform dependent tools for

2

various operating systems (Windows, Linux, Mac), but to allow the core code to remain

virtually untouched, so the only modification when compiling for another platform is to

change a library name or file header in the main source file. It will not be true platform

independence, but the game engine is supported on the top three current operating

systems, which are Mac OS, Linux, and Windows. Ideally, all that would be necessary

to set up a program using PIGE code would be to add the platform specific header in the

main file. Table 1 demonstrates the naming convention used for the header libraries to

link to a program’s main function.

Operating System Header

Linux <pige_linux.h>

Macintosh <pige_mac.h>

Windows <pige_windows.h>

Table 1. Header examples.

The 1980s saw computer gaming become a serious form of business and

entertainment. Companies such as Sierra On-line and LucasArts created quite a few

games in the late 1980s, many with a similar look and feel. This is because they

modeled many of their games from the same game engines, which allowed the game

developers to work more on the game design, and not on the supporting technology.

Like these 1980s game engines, PIGE strives to follow the often touted practice of code

reuse.

3

Since PIGE is available in the public domain, its contents are freely available to

anyone with no restrictions. PIGE’s free availability is a benefit to the small-scale game

developer, or for a person who is interested in learning more about game programming.

Computer Specifications

Apple Power Mac G4 400 MHz G4
2 Hard drives
20 GB running Mac OS 9
15 GB running Mac OS 10.2
896 MB RAM
16 MB ATI Rage 128 Pro
Project Builder

Apple iBook 500 MHz G3
10 GB hard drive, two partitions, running
Mac OS 9 and Mac OS 10.1
320 MB RAM
8 MB ATI Rage Mobility
Project Builder

PC 1 GHz Intel Pentium III
2 hard drives
3 GB running Windows 98
60 GB running RedHat Linux 8.0
320 MB RAM
32 MB ATI Rage Pro
CodeWarrior and gcc

Table 2. Test computer systems.

PIGE was developed on three different machines, two Macintosh computers, and

a generic PC running both Windows 98 and RedHat Linux 8.0. Table 2 lists the further

specifications of these machines.

4

This paper is divided into several parts: graphics, sound, porting, and integration.

Chapter 2 will discuss more complicated elements of graphics such as collision

detection, picking and selection, and loading textures using OpenGL. Chapter 3 will go

over the fundamentals of OpenAL and integrating it with OpenGL. Chapter 4 will

review the difficulties involved when porting these open technologies across several

platforms. Integrating PIGE's graphics and audio components together will be explained

in Chapter 5. The appendices hold example code which was used in creating PIGE.

Related Work

If an open source, platform independent, game engine already existed, there

would be little purpose for the creation of PIGE. There are quite a few web sites

dedicated to the creation of games, such as NeHe [10], Gametutorials.com,

idevgames.com, Gamasutra.com, and several other sites committed to gaming

technologies for OpenGL and OpenAL.

The most prominent game developer to support multiple platforms is id

Software. Many of id's games, especially those in the Quake series, were released for

Windows, Linux, and Macintosh. In 1999, id Software released the source code for

Quake under the GNU General Public License [5], allowing people to download, view,

and use the source code for free as long as they adhered to the GPL guidelines. Two

years later, the source code for Quake II was released. Their latest release in the Quake

series, Quake III, has not been released under the GPL, but is licensed for $250,000

against a 5% royalty of the wholesale for a single license [8]. The first two Quake

5

games are essentially free under the GPL, but they contain dated technology. Especially

in the gaming realm, any technology more than two or three years old becomes

recognizably dated. The Quake III engine displays id's most current offerings, but it

comes at an expensive price which does not make it a feasible solution to smaller

developers.

One of the most inexpensive game engines is the Torque Engine by Garage

Games, which was formed from the remnants of Dynamix, after it closed in September

2001. The game engine costs $100 per programmer [6], but it has the restriction that the

game needs to be published by Garage Games. The Torque Engine is based on the

technology which was used to develop the Tribes games (Tribes, Starsiege, Tribes2).

The Torque Engine has been made available for Windows, Linux, and Mac OS 9/X,

making it one of the most versatile game engines available.

A trend over the last several years is for companies such as Loki or Westlake

Interactive to be solely focused on porting games from Windows to Linux or Macintosh.

The disadvantage of this method is that only the most popular games are worth porting,

and additional resources of time and money are necessary to fund the port.

Yet, for all of these solutions, none of them have tried to combine OpenGL and

OpenAL into an open source game engine, which is the focus of PIGE.

6

CHAPTER 2

OPENGL

OpenGL was introduced in 1992 as an Application Programming Interface (API)

to support the drawing of 2D and 3D graphics [12]. Since then, it has become an

industry standard for graphics, extending its capabilities across a wide variety of

applications such as medical imaging, virtual reality, mathematical visualization, and

computer games. Various technologies have vied with OpenGL for prominence, but

none have had its success.

However, OpenGL is somewhat limited in its capabilities, limited mostly to the

rendering and drawing of images. GLUT (OpenGL Utility Toolkit) is a window system

independent toolkit often used in conjunction with OpenGL to provide extra

functionality for windows and I/O communication via the mouse or keyboard. What

OpenGL does not take care of, GLUT handles.

OpenGL and GLUT are supported on nearly every popular operating system and

computer architecture available. These are optimal choices for PIGE, providing for

graphics and user input capabilities.

Documented below are several of the more complicated graphics techniques

involved in PIGE. The more rudimentary and basic elements of OpenGL will not be

covered in this paper. Refer to either OpenGL Programming Guide [15] or OpenGL : A

Primer [1] for an introduction to programming OpenGL.

7

Collision Detection

With the advent of 3D technologies in the past several years, programmers have

made radical changes in how they program applications, especially when regarding

computer games. Collision detection is an essential part in 3D games. It ensures that

the game physics are relatively realistic, so that an object does not cut through other

objects or hovers when it should fall. How well a game can detect collisions is an

integral part of the believability and enjoyment of the game. A poorly implemented

collision detection system can be a bane to a product, whereas an excellent

implementation can produce amazing results.

The two main parts in collision detection are detecting whether or not a collision

has happened, and if so, responding to the collision. Discovering if a collision has

occurred is the basis of this problem.

While responding to the collision is computationally much easier than

discovering a collision, it can still pose several problems in how objects are going to

react to each other. In modern computer games, if the character runs into a wall, then

the character will either stop or will continue 'sliding' along the wall. However, if this

character comes up to a movable box, then the character might start pushing the box

instead. Or consider a ball bouncing around in a room. The ball is going to behave

quite differently than a person walking around in a room.

The first step is to see if the viewer, or the 'camera', will move through any

polygons or planes on its next move. Instead of just calculating if the camera will hit

8

any particular polygon, all polygons are extended indefinitely along their plane. This

makes calculations easier to initially perform. If the camera does not intersect the plane,

then no calculations are necessary to see if the camera will cross through the polygon

itself. This saves some computation by using an easier calculation (with less

processing). When a collision with the plane is detected, further processing is done to

check if the camera intersects the polygon itself.

2D applications can easily detect collisions by determining if two objects are

trying to occupy the same area. If the circle in Figure 1 is trying to get to the triangle, it

checks in all available directions. The circle cannot move to the right, since it is blocked

by the gray wall, so its only option is to move down. Such a world can easily be

represented by a 2D array.

Many older 2D games use a static drawing for the scene, which allows for only a

Figure 1. 2D grid.

9

single perspective, but it simplifies the process of drawing the scene. In comparison, 3D

graphics require a large amount of mathematical calculations to render each scene.

Collision Detection Mathematics

A vector is essentially a directed line segment which has direction and

magnitude. With graphics, this can be translated as the angle and length or distance. But

the magnitude can also represent other factors such as the force or speed of an object. A

scalar, as opposed to a vector, only has magnitude, but not direction.

Vectors differ from a point on a Cartesian plane, because the point represents

only one spot on the plane, whereas a vector is the difference between two points on a

plane. Vectors can be represented in a variety of ways, as shown in equations 1-1

through 1-3. A vector V can be represented as the difference of two points P1 and P2

(1-1), the difference of the components of those two points (1-2), or by the constituent

vector components (1-3). A 2D world has only x and y components, whereas a 3D

world adds the z axis and another component to each vector. Figure 2 gives a visual

representation of these equations on a Cartesian plane.

V = P2 - P1 (1-1)

V = (x2 - x1, y2 - y1) (1-2)

V = (Vx, Vy) (1-3)

10

Figure 2. Vector representation.

Vectors play an important role in collision detection by determining how far

apart objects are from each other. The magnitude or length of a vector can be found by

taking the square root of the sum of the squares of each of the vector's components.

2D Vector: |V| = sqrt(Vx
2 + Vy

2) (1-4)

3D Vector: |V| = sqrt(Vx
2 + Vy

2 + VZ
2) (1-5)

To normalize a vector, each component of the vector is divided by the magnitude

of the vector. When all of the vector components are added together, they will equal 1.

A plane’s normal is important to provide realistic lighting and collision detection.

Vx = Vx/|V| (1-6)

Vy = Vy/|V| (1-7)

11

Vz = Vz/|V| (1-8)

Vx + Vy + Vz = 1 (1-9)

Planar Equation: Ax + By + Cz + D = 0 (1-10)

Figure 3. Plane normal.

A plane is defined by three non-collinear points. (x, y, z) from the planar

equation are the coordinates of a point on the plane, and the coefficients A, B, C, and D

are constants which describe the spatial properties of the plane. A, B, and C can also

represent a vector (a, b, c) which is a normal of the plane.

Back-face Culling

Back-face culling is the process of not rendering a polygon if its face is turned

away from the viewer. A point can be identified as being on the inside or outside of a

plane surface according to the sign of the plane equation. If Ax + By + Cz + D < 0, then

the point (x, y, z) is on one side of the plane surface. If Ax + By + Cz + D > 0, then the

point (x, y, z) is on the other side of the plane surface. Otherwise, if the planar equation

12

is equal to zero, the point (x, y, z) is on the plane.

On the average, about half of the polygons in a scene will not be visible by the

viewer. Eliminating these unseen polygons can help the performance of viewing the

scene since not nearly as many polygons need to be rendered or be involved in the

collision detection. This can save an enormous amount of time in calculating where an

item may collide. One technique which can save time is the use of Binary Space

Partitioning (BSP) trees, which divide up a world into convex hulls to remove

unnecessary polygons [9].

To determine whether a plane is facing the viewer or not, the dot product is used

to get the angle between the plane's normal and a vector from the viewer's position to a

point on the plane. If the angle is between 90 and 270 degrees, then the polygon is

facing the viewer. Otherwise, the polygon or plane is not facing the viewer.

Sphere – Plane Collision

One way to detect a collision in a 3D world is the sphere – plane detection

method. The demonstration program which was created with PIGE used this technique

to detect if the user had bumped into an object. This demo is explained further in

chapter 5, and the source code is available in Appendix A. The sphere-plane method is

relatively easy to compute since not every polygon of a more complex model has to be

compared to the environment to see if a collision has occurred. The viewer or camera

can be thought of as one solid entity, such as a ball, instead of a human with several

limbs.

13

Detecting collisions with a sphere tends to be easier to calculate because of the

symmetry of the object. The entire surface on a sphere is the same distance from the

center, so it is easy to determine whether or not an object has intersected with a sphere.

If the distance from the center of the sphere to an object is less than or equal to the

sphere's radius, then a collision has occurred.

Figure 4. Sphere – plane collision.

The main point is not to let the sphere get too close to the plane. Before doing

so, every plane needs to have its own normal vector and D value, which are taken from

the planar equation (1-10).

The distance between a vertex, which is the sphere's center point in this case, and

the plane is calculated by taking the dot product of the plane's normal and the sphere's

position.

14

distance = plane.normal • sphere.position (1-11)

Depending on which side of the plane the sphere is on, the distance value can be

either positive or negative. If the distance becomes zero, then the sphere is intersecting

the plane, which is generally not a desirable effect when detecting a collision. This can

be corrected by subtracting the sphere's radius from the distance.

Waiting for an object's distance to reach zero before detecting a collision will not

always work. If the sphere's velocity is high, it might pass entirely through the plane on

its next move. The way to check for this situation is to see if the distance to the plane

has either turned negative or positive. If the sphere passed through the plane, the

distance's numeric sign will change. If the numeric sign changes, then a collision

occurred [2].

When checking for a collision, two points are important: the distance between

the sphere and a plane should not become zero, and the numeric sign of the distance also

should not change. If it does change, then the sphere has moved through the wall.

The game program will first check if a collision will result when the object

moves in the desired direction. If there is a collision, then the program will respond

appropriately, such as refusing to move in the desired direction.

Extensive source code implementing collision detection can be found on pages

66 through 68 in Appendix A.

15

Picking and Selection

With the creation of the Graphical User Interface came a new input device -- the

mouse. The mouse would be rendered useless if the computer could not detect the user

pressing a button and reacting appropriately to where the mouse cursor is on the screen.

GLUT makes it simple to check when a mouse button has been pressed. In the

main function, the glutMouseFunc function specifies which function will respond and

handle mouse events.

int main(int argc, char *argv[]))
{
 .
 .
 glutMouseFunc(mouse_function);
 .
 .
}

The mouse_function checks when the mouse button is pressed down and then

calls the retrieveObjectID function to determine if a selectable object is underneath the

mouse cursor.

if (state == GLUT_DOWN)
{
 objectID = retrieveObjectID(x, y);

 switch (objectID)
 {
 case PYRAMID: printf("Saw the pyramid\n"); break;
 case CUBE: printf("Saw the cube\n"); break;
 case TORUS: printf("Saw the torus\n"); break;
 default: printf("I didn't see anything\n"); break;
 }
}

16

The retrieveObjectID function returns the number of the closest item which was

selected. If no item was selected, then 0 is returned.

int retrieveObjectID(int x, int y)
{
 int objectsFound = 0;
 GLint viewportCoords[4] = {0};
 GLuint selectBuffer[32] = {0};

The glSelectBuffer function registers the selection buffer, which is an array of

size 32. Then the view port coordinates are retrieved with glGetIntegerv. Changing the

matrix mode to projection allows the program to check the x and y coordinates of the

mouse's position against the rendered 3D scene.

 glSelectBuffer(32, selectBuffer);
 glGetIntegerv(GL_VIEWPORT, viewportCoords);
 glMatrixMode(GL_PROJECTION);

A new combined transformation matrix is pushed on the model view stack so the

3D projection is not affected. The rendering mode is then changed to GL_SELECT.

Any changes which are made will not affect the original copy of the scene since it is

stored in the selectBuffer. The gluPickMatrix function creates a projection matrix which

is around the cursor. This allows for rendering in only the region which is specified by

the included parameters.

 glPushMatrix();
 glRenderMode(GL_SELECT);
 glLoadIdentity();
 gluPickMatrix(x, viewportCoords[3] - y, 2, 2, viewportCoords);

The gluPerspective function was originally called in the OpenGL initialization

17

function (see InitGL in Appendix A, page 60), but now it is called again so the

perspective matrix is multiplied by the newly created pick matrix.

 gluPerspective(45.0f, (float)kWindowWidth
 / (float)kWindowHeight, 0.1f, 150.0f);

Go back into the model view matrix, then render into the selective mode.

 glMatrixMode(GL_MODELVIEW);

 drawShapes(GL_SELECT);

When the render mode returns to GL_RENDER from the select mode, it returns

the number of objects which were found under the mouse cursor. If no objects were

found, then glRenderMode will return 0. If there was more than one object found, then

the selectBuffer will need to be searched to find the closest object. The projection

matrix is then returned back to normal.

 objectsFound = glRenderMode(GL_RENDER);

 glMatrixMode(GL_PROJECTION);

The current matrix is popped off to stop affecting the projection matrix, and then

the normal model view matrix is reloaded.

 glPopMatrix();

 glMatrixMode(GL_MODELVIEW);

If at least one object was found, then the function iterates through the selected

items to find which one is closest to the viewer. If only one object was selected, then it

18

skips past the for loop and returns the selected object. Otherwise, zero is returned to

indicate that nothing was found beneath the cursor.

 if (objectsFound > 0)
 {
 GLuint lowestDepth = selectBuffer[1];
 int selectedObject = selectBuffer[3];

 for (int i = 1; i < objectsFound; i++)
 {
 if (selectBuffer[(i*4)+1] < lowestDepth)
 {
 lowestDepth = selectBuffer[(i*4)+1];
 selectedObject = selectBuffer[(i*4)+3];
 }
 }
 return selectedObject;
 }

If an object has been selected, it is up to the program to determine how to

respond. For example, PIGE has four options on how to respond, depending on the state

of the cursor: LOOK, TALK, DO, INV. If the cursor is over a lamb chop, LOOK would

give a description of the lamb chop; TALK might either try and speak with the meat, or

try and eat it; DO would likely pick it up; INV would use another inventory item, such

as a knife, with the lamb chop.

Loading Textures

The ability to use textures brings amazing detail to what would otherwise be a

bland, single-color polygon. Some of the first computer programs which experimented

with 3D graphics were limited to wire frame or flat colored polygon models, as shown in

19

Figure 5. Cube without texture.

Figure 6. Cube with texture.

20

Figure 5. In retrospect, the cube in Figure 6 appears to be more realistic with the wood

texture applied.

PIGE supports the use of Targa (TGA) images because of their high resolution

and capability for transparency. GIF images also allow transparency, but have a limit of

256 colors, a severe limitation when monitors can display nearly 17 million colors.

Transparency is a critical element, especially when displaying the icons, which are non-

rectangular shapes such as a hand, lips, or an eye. It is because of these capabilities that

PIGE loads TGA files instead of other image formats (GIF, BMP, JPG).

All images must have a height and width which is a power of 2 (2, 4, 8 ... 64,

128, 256) [12]. Every image in PIGE is 128 x 128 pixels in size. If an image does not

fit these criteria, it will not load or display correctly.

To begin adding a texture into a program, a global array is declared, which will

contain the image(s). If more than one texture is being loaded, then the array size needs

to be set appropriately. For some systems, such as Windows and Linux, this variable is

declared as an unsigned int instead of an unsigned long.

unsigned long texture[1];

The TGAImageRec structure contains the data for the texture which will be

loaded. The data variable holds the actual data, bpp is for the image color depth in bits

per pixel, and the two size variables record the width and height of the image.

typedef struct TGAImageRec
{
 GLubyte *data; // Image Data (Up To 32 Bits)
 GLuint bpp; // Image Color Depth In Bits Per Pixel.

21

 GLuint sizeX; // Width of image
 GLuint sizeY; // Height of image
} TGAImageRec;

LoadGLTextures() is one of the two important functions used to load textures

into a program. It is often called by the initializing function. The type variable is

initialized to GL_RGBA, which allows for standard red, green, and blue colors, plus the

option for an alpha transparency layer. A new TGAImageRec structure is then allocated

to contain the new image.

void LoadGLTextures(unsigned long texture[])
{
 GLuint type = GL_RGBA;
 TGAImageRec *texture0;

Next, load an image using the LoadTGA function, which returns a

TGAImageRec to be stored in texture0. LoadTGA will later be explained in further

detail.

 texture0 = LoadTGA("crate.tga");

Now that the image has been loaded, the texture needs to be built. The

glGenTextures call tells OpenGL to generate one texture. glBindTexture binds the

named texture texture[0] to a target. Keep in mind that the first array entry starts at 0,

not 1, in the C programming language.

 glGenTextures(1, &texture[0]);
 glBindTexture(GL_TEXTURE_2D, texture[0]);

The two glTexParameteri calls are OpenGL filters which specify how to

22

manipulate a texture when it is stretched or shrunk to proportions which are larger or

smaller than the original texture.

 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

If the bits per pixel is set to 24, then there is no specified alpha channel, so the

type is set to RGB. However, if the bpp is 32, then the type is set to RGBA, which has

an alpha channel that allows for transparency.

 if (texture0->bpp == 24)
 {

type = GL_RGB;
 }
 else
 {

type = GL_RGBA;
 }

Now the texture is finally created with glTexImage2D. Since this texture is a 2D

image, it is set with GL_TEXTURE_2D. The second parameter is the detail, which

tends to be set to 0. Type specifies the number of components in the image. For a

standard RGB image, there are three components: Red, Blue, and Green. If there is an

Alpha element, then there are four components. The next two parameters refer to the

width and height of the image. After that is the border of the texture, which is generally

set to 0. The type variable is used again to tell OpenGL that the image is composed of

red, blue, green, and sometimes an alpha component. GL_UNSIGNED_BYTE reveals

that the data is composed of unsigned bytes. The final parameter, texture0->data refers

to where to retrieve the image data.

23

 glTexImage2D(GL_TEXTURE_2D, 0, type, texture0->sizeX,
 texture0->sizeY, 0, type, GL_UNSIGNED_BYTE, texture0->data);

}

LoadTGA is the second half to loading images. The LoadGLTextures function

varies slightly when loading in other file formats, such as bitmaps, but the LoadTGA

function is specific to only TGA files. Below are the variables used for the function.

The variables of type GLuint can sometimes be replaced with a standard int, but that

specification can vary from system to system. For consistency, all variables are declared

as GLuint, which compiles well across all systems.

TGAImageRec* LoadTGA(char *filename)
{

Glubyte TGAheader[12]={0,0,2,0,0,0,0,0,0,0,0,0};
// Uncompressed TGA Header
GLubyte TGAcompare[12];
GLubyte header[6];
GLuint bytesPerPixel;
GLuint imageSize;
GLuint temp;
GLuint type = GL_RGBA;
GLuint i;
TGAImageRec *texture;
FILE *file;

The file is opened and checked to see if it was opened successfully. If not, the

program returns an error to let the programmer know what went wrong. Some IDEs

require that the images are included into the project, or the compiler will not be able to

locate the images.

file = fopen(filename, "rb");

if((file == NULL) || // Does File Even Exist?
 (fread(TGAcompare, 1, sizeof(TGAcompare), file) !=

24

 sizeof(TGAcompare)) || // Are There 12 Bytes To Read?
 (memcmp(TGAheader, TGAcompare, sizeof(TGAheader)) != 0) ||
 (fread(header, 1, sizeof(header), file) !=
 sizeof(header))) // If So Read Next 6 Header Bytes
{

 printf("Couldn't open file %s\n", filename);
fclose(file);
return NULL;

}

texture = (TGAImageRec*)malloc(sizeof(TGAImageRec));

texture->sizeX = header[1] * 256 + header[0];
texture->sizeY = header[3] * 256 + header[2];

By using careful error checking, if anything failed when checking the height,

width, and bit depth to be valid, then the file is closed and the memory is freed.

 if((texture->sizeX <= 0) || (texture->sizeY <= 0) ||
 ((header[4] != 24) && (header[4] != 32)))
{

fclose(file);
free(texture);
return NULL;

}

texture->bpp = header[4];
bytesPerPixel = texture->bpp/8;

imageSize = texture->sizeX * texture->sizeY * bytesPerPixel;

texture->data = (GLubyte*)malloc(imageSize);

If there is no data present, or it was misread, the function frees up the memory

taken up by the texture. NULL is returned to indicate that an error occurred and the

image could not be opened.

// Make sure the right amount of memory was allocated
if((texture->data == NULL) ||
 (fread(texture->data, 1, imageSize, file) != imageSize))
{

// Free up the image data if there was any
if(texture->data != NULL)

free(texture->data);

25

fclose(file);
free(texture);
return NULL;

}

To avoid conflicts, imageSize is casted as an int from a Gluint. Mac OS X has

no problems with imageSize being either a Gluint or an int, but Windows compilers will

return this as an error. The Linux compiler gcc gives a warning, but it will still run with

no noticeable problems. This loop swaps the red and blue elements so the colors will

appear correctly.

// Loop Through The Image Data
for(i = 0; i < (int) imageSize; i += bytesPerPixel)
{

// Swaps The 1st And 3rd Bytes ('R'ed and 'B'lue)
temp = texture->data[i];
// Temporarily Store The Value At Image Data 'i'
texture->data[i] = texture->data[i + 2];
// Set The 1st Byte To The Value Of The 3rd Byte
texture->data[i + 2] = temp;
// Set The 3rd Byte To The Value In 'temp'

}

fclose(file); // Close The File

return texture;
}

Once the texture has been loaded into memory, it needs to be mapped onto a

polygon inside the display function. The glBindTexture call decides which image, if

there is more than one, to use for this particular polygon. glBindTexture cannot be

declared between the glBegin and glEnd functions. The image needs to be mapped

according to the polygon, or it might appear upside down, reversed, side ways, or not at

all. When mapping, map in a counterclockwise fashion. This example starts with the

26

bottom left corner and rotates from there. Refer to Figure 7 for a diagram about

mapping.

Figure 7. Texture mapping.

glBindTexture(GL_TEXTURE_2D, texture[0]);

glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
// Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
// Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
// Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
// Top Left Of The Texture and Quad

glEnd();

Full source code for loading textures is available in Appendix C, starting on page

94.

27

CHAPTER 3

OPENAL

When deciding how to integrate audio capabilities with PIGE, there were two

choices. A different audio API could be used for each operating system, or OpenAL

could be used with each of the tested operating systems.

OpenAL was the logical choice, complimenting the PIGE methodologies, by

being a platform-neutral, open-source, cross-platform API. OpenAL (Open Audio

Library) [11] is a sister technology to OpenGL, striving to provide a vendor-neutral,

cross-platform API for audio capabilities. This API is currently in the early stages of

development, but it has effectively been used in several game ported to Linux and is

supported by Creative Labs, a major sound board manufacturer.

As part of the effort to develop a game engine which utilizes as many platform

compliant technologies as possible, the fairly young OpenAL was chosen to produce

sounds. OpenGL has been around for several years and has had a large number of books

and other references based upon it, but OpenAL is still in its adoption phase, and has not

built up the following and resources that its graphics counterpart has. The only decent

OpenAL tutorial was found at Dev-gallery.com [3], and even the examples provided by

the site did not work properly. After extensive experimentation, the OpenAL demo

worked on Windows, Linux, and Mac OS X. PIGE has produced documentation of the

set up and construction of OpenAL on different platforms.

28

Figure 8. OpenAL demo screenshot.

The remainder of this chapter highlights the important sections of Appendix B to

set up an OpenAL program.

The standard set of headers are these:

29

#include <stdio.h>
#include <stdlib.h>
#include <GL/glut.h>
#include <AL/al.h>
#include <AL/alut.h>

However, for Mac OS X, there are slight changes necessary for the GLUT and

OpenAL libraries.

#include <stdio.h>
#include <stdlib.h>
#include <GLUT/glut.h>
#include <OpenAL/alut.h>

A standard has been developed to avoid the use of global variables, because they

are generally considered bad programming style. This is to help avoid odd

programming errors which can occur if global variables are used. When used with

proper care, they can be useful and make programming an easier process, especially with

OpenGL and OpenAL. Good practice dictates that most variables should remain local to

several functions, and if the variables need to be shared, they are then passed as

parameters. Such careful programming style can create unnecessary complications

when working with OpenGL and OpenAL, so several global variables are made

available to the program.

In this example, only one sound is being loaded, which explains why only one

buffer and source is being declared.

#define NUM_BUFFERS 1
#define NUM_SOURCES 1
#define NUM_ENVIRONMENTS 1

30

There is only one listener, and these arrays define the initial set up of the listener

for its position, direction, and velocity. The listener is not moving at the start, but can

move around any other sound source.

ALfloat listenerPos[]={0.0,0.0,4.0};
ALfloat listenerVel[]={0.0,0.0,0.0};
Alfloat listenerOri[]={0.0,0.0,1.0, 0.0,1.0,0.0};

Each sound source has similar properties that the listener has. The source0Pos

and source0Vel arrays show the position and velocity of the sound source.

ALfloat source0Pos[]={ -2.0, 0.0, 0.0};
ALfloat source0Vel[]={ 0.0, 0.0, 0.0};

Sounds need to be stored in an array, similar to textures. Several buffers are

needed to contain the sounds and other necessary information. The size, freq, format,

and data variables are used when loading the sound files.

Aluint buffer[NUM_BUFFERS];
Aluint source[NUM_SOURCES];
ALuint environment[NUM_ENVIRONMENTS];

ALsizei size,freq;
ALenum format;
ALvoid *data;

The init function is called from the program’s main function. It begins by setting

the initial positions for the listener position, velocity, and orientation.

void init(void)
{
 alListenerfv(AL_POSITION,listenerPos);
 alListenerfv(AL_VELOCITY,listenerVel);
 alListenerfv(AL_ORIENTATION,listenerOri);

31

Next, the program creates the buffers and checks for any problems in the

process.

 alGetError(); // clear any error messages

 // Generate buffers, or else no sound will happen!
 alGenBuffers(NUM_BUFFERS, buffer);

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating buffers !!\n");
 exit(1);
 }
 else
 {
 printf("init() - No errors yet.");
 }

The next three lines are the most important in loading the wave file. If more than

one sound is loaded, then these three lines of code are repeated, but they reference

different sound files and buffer positions. Refer to Table 3 on page 35 to view how the

alutLoadWAVFile call differs between platforms.

 alutLoadWAVFile("a.wav",&format,&data,&size,&freq);
 alBufferData(buffer[0],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

Similar to how the buffers were created, the sources are now created and checked

for any errors.

 alGetError(); /* clear error */
 alGenSources(NUM_SOURCES, source);

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating sources !!\n");
 exit(2);
 }
 else

32

 {
 printf("init - no errors after alGenSources\n");
 }

Finally, the properties of the sound are set. First, the sound pitch and gain are

set, then the source's position and orientation are defined, and finally the source is

associated with its buffer to make it loop through the wave file. Setting the

AL_LOOPING value to AL_TRUE determines whether or not the sound will play

continuously, or if it will just play once and then stop. For ambient, background music,

one might consider setting this to AL_TRUE, but for a sporadic sound such as a gun

shot or a foot stomp, then AL_LOOPING should be AL_FALSE.

 alSourcef(source[0], AL_PITCH, 1.0f);
 alSourcef(source[0], AL_GAIN, 1.0f);
 alSourcefv(source[0], AL_POSITION, source0Pos);
 alSourcefv(source[0], AL_VELOCITY, source0Vel);
 alSourcei(source[0], AL_BUFFER,buffer[0]);
 alSourcei(source[0], AL_LOOPING, AL_TRUE);

}

33

CHAPTER 4

PORTING

The key to PIGE is the ease of porting a project from one operating system to

another.

In a computing era where roughly 9 out of 10 of all consumer machines are

running some version of Windows, there seems to be little incentive for the original

developers to cater to the remaining 10% of the population. In response, most of the

porting efforts come from dedicated Macintosh and Linux developers to convert

Windows-native programs to other platforms.

When researching for examples to include into PIGE, difficulties were faced in

translating other people's code into a more platform-neutral form. This required

weeding through Windows and SDL[7] API code, extracting the parts which could be

left untouched, and then effectively ‘translating’ the rest of the code into standard

OpenGL, GLUT, and OpenAL commands.

This operation was relatively minor in comparison to what programmers have to

endure when porting a large application. Well-written, modular code can be ported in a

relatively short amount of time. The biggest difficulties arise when the original

application was written in a non-modular or unportable manner, which makes the

porting increasingly more difficult. It takes a lot of time to convert large portions of

code to another machine’s native API, instead of just having to deal with small, modular

sections. As intended with PIGE, if a particular section needs to be rewritten, that small

34

section can be manipulated instead of having to replace large portions of the program to

ensure that everything will continue to work correctly.

Despite all attempts to keep this program as non-platform specific as possible,

there were small areas that required specific code features. One of the most difficult

parts in porting was the initial set up of the systems and compilers to work with OpenGL

and OpenAL. Mac OS X, with Apple's Project Builder IDE, was by far the easiest to

configure. The only configuration which was necessary was to add several frameworks

to the project (Foundation, GLUT, OpenGL, and OpenAL) and making sure the proper

libraries were included in the source code.

Linux, alongside with the gcc compiler, took several hours of investigation to

determine the proper paths and libraries to include, but once this matter was corrected,

the example programs were relatively simple to create, compile, and run.

Windows, along with CodeWarrior, proved to be the most challenging to meet

PIGE's goals. Microsoft’s Visual C++ tends to be the dominant compiler for Windows,

and such, more references and helpful resources are available for VC++. The limited

help found for CodeWarrior generally referred to the Macintosh version. Corresponding

documentation for CodeWarrior and Windows98 was difficult to obtain, and while

Linux documentation was plentiful, it tended to be quite scattered.

OpenGL has been around for over a decade, so there is a plethora of

documentation available. OpenAL, however, is still a nascent technology, so help

documents and references, both in print and on-line, are nearly nonexistent for all

platforms.

35

OpenGL proved its ease of portability by offering fairly little resistance. The

most common conflict was a difference of type declaration, which was easily fixed by

changing a GLuint to a standard int, or an unsigned long to an unsigned int.

The picking and selection demo, which was detailed in the second chapter, had

absolutely no problems in porting. It compiled and ran on all systems with the only

modification being the header libraries.

For Windows and Linux, an unsigned int was needed for the texture in the

texture demonstration. Linux would compile and run with an unsigned long, but it gave

a warning. For Mac OS X, an unsigned long, not an unsigned int, was needed. This

difference extended into the LoadTGA function which needed different parameters to

accommodate the various operating systems.

OpenAL is a little more limited in its scope of what it accomplishes, so the range

of problems is considerably smaller than that of OpenGL. The only major difference

which was encountered was the way the alutLoadWAVFile() function needed to be

called. All three platforms had a different set of parameters when calling

alutLoadWAVFile, as shown in Table 3.

Operating System Source Code

Linux alutLoadWAVFile((Albyte *) “c.wav”, &format, &data,
size,&freq, &al_bool);

Macintosh alutLoadWAVFile("c.wav",&format,&data,&size,&freq);

Windows alutLoadWAVFile("c.wav",&format,&data,&size,&freq,
&al_bool);

Table 3. alutLoadWAVFile differences.

36

The al_bool variable is a different type for Linux and Windows. Linux declares

the al_bool as an ALboolean, but Windows declares it as a char. If the last parameter in

the alutLoadWAVFile call for Windows is the number 0, it will return an unhandled

exception, as shown in Figure 9.

Figure 9. OpenAL unhandled exception.

Another problem illustrated how forgiving or merciless some compilers decide to

be with code. At the beginning of the init() function, alutInit(0, NULL) was declared

and Mac OS X produced no errors. The Linux version compiled, but it would not play

the wave files. Instead, it would return this error:

open /dev/[sound/]dsp: Resource temporarily unavailable
fcntl: Bad file descriptor

Once the alutInit(0, NULL) declaration was removed, the Linux warning

disappeared, and the Mac OS X compilation returned no complications after the change.

One of the most unexpected problems to arise came from moving PIGE from

Mac OS 10.1 to 10.2. There were enough internal changes to 10.2 that the Mac OS X

37

build of PIGE would crash. The problem with the PIGE demonstration dealt with

entering the glutGameMode and full-screen mode. Downloading the latest version of

GLUT 3.0.1 for Mac OS X solved this problem. Mac OS 10.2 was not the only

operating system to have this problem, as RedHat 8.0 also crashed with the same

problems. This is an area where the most current technology needs to be maintained, or

an alternative route needs to be taken to force PIGE to go into full screen mode. System

specific APIs such as Cocoa for Mac OS X or SDL for Linux can also be used to

activate the full screen mode.

There were three other problems between OS 10.1 and 10.2. The

glutSetCursor(GLUT_CURSOR_NONE) call makes the default cursor disappear, but

this did not work under OS 10.2, yet it worked fine under OS 10.1. Another difference

was OS 10.1 did not recognize the Boolean values FALSE and false to be the same. The

last conflict between these two OS versions was the executable files were not backwards

compatible. For a demonstration project to run on OS 10.1, it needed to be recompiled,

and then it would run fine after that. Yet, it was unexpected to see such a problem occur

between the minor point releases of an operating system.

PIGE adheres to the modularity paradigm by being able to take individual parts

and seamlessly integrate them together. Only one problem resulted when the major

graphics and audio components of PIGE were combined. The following code, which is

responsible for drawing the cursor on top of the rendered 3D scene, needed to be outside

of the drawShapes function, or the picking and selection would not work properly.

When this code was in the drawShapes function, and the mouse was clicked, the

38

retrieveObjectID function would always return the last loaded name identification

number, even if another object was selected.

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask(GL_FALSE);

 draw_cursor(mouse_x, mouse_y);

glDepthMask(GL_TRUE);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);

In the end, the problems and inconsistencies in using PIGE between the

platforms are still much less than the problems which can occur when porting from one

system’s native API to another. The largest concern is the amount of support for

OpenGL, GLUT, and OpenAL on each of these operating systems.

39

CHAPTER 5

IMPLEMENTATION

In the end, none of the discussed technologies are of much practical use if they

cannot be combined into a coherent product. The first project which PIGE is being used

for is for the game Psychomancer.

Psychomancer was initially developed as a text-based adventure/role-playing

game during the summer of 1999. It has expanded and improved since its creation, but

it has also remained text-based, which is no longer an acceptable presentation medium.

Figure 10. Psychomancer screenshot.

40

Figure 10 shows an example screenshot of the game, implemented with PIGE.

On the base level, this scene looks fairly simple, but there is an enormous

amount of work required beforehand to reach even this point. It was discovered during

the creation of Psychomancer that the core game engine needs to be constructed first

before any application can be created. Once the core technologies are constructed and in

place, then the design of the product can finally begin.

This has proven to be no different with game companies who have spent an

enormous amount of time in just constructing the technologies. One of the key roles

PIGE is trying to provide is to reduce the amount of time spent on creating gaming

technologies, thus avoiding recreating the wheel, and allowing the developer to

concentrate further on the actual design of the game.

Figure 11 on page 41 illustrates the connection between the game engine and its

components. PIGE provides for the graphics and sound aspects of a game engine. PIGE

was initially created as several smaller programs to concentrate individually on elements

of graphics or sound. Each program focused on getting some smaller element of PIGE

working before the pieces were to be combined together. Appendices B and C are two

of these demonstrations which were created. Appendix A is the combined result of

these many smaller programs to form the Psychomancer demo.

It is up to the discretion of the programmer to manipulate the tools provided by

PIGE to suit their needs. PIGE provides the core foundation for graphics and sound

capabilities, but the game play element is dependent upon the style of the game being

created. An example presented in the Psychomancer demo is that it has four different

41

icons (LOOK, TALK, DO, INV) to interact with selectable items. A first person shooter

(FPS) game could likely reduce this to one or two icons since the interaction in a FPS

tends to be more limited and direct than the more complex interaction system provided

by an adventure or role-playing game.

Another difference between game genres is the inventory system. A FPS may

only provide for a simple inventory (types of weapons and ammunition), whereas an

adventure game would tend to have a more complex inventory system. Other games,

Figure 11. Game engine diagram.

42

like strategy or racing, may only maintain a few statistics for an inventory, such as

money, lumber, or type of vehicle.

PIGE is similar to how many other APIs provide the tools to ease the process of

creating an application. Once these tools are available, it is up to the programmer to

decide how to make use of them.

43

CHAPTER 6

CONCLUSION

Evaluation of PIGE

The goal of PIGE was to provide a set of tools that would be useful in designing

a computer game engine which would run on the Windows, Linux, and Macintosh

operating systems. On most levels, this has been a successful endeavor. The

construction of a full-featured game engine would take the effort of multiple man-years

to reach a professional level of quality. PIGE is a demonstration that a platform neutral

game engine is possible.

Not only did PIGE prove the feasibility of a platform independent game engine,

but it also created a source of documentation to teach others about setting up and using

OpenGL and OpenAL. This is particularly an important area for OpenAL since there

has been so little documentation created for that API.

The largest problem facing the feasibility of PIGE is the variable amount of

support for OpenGL, GLUT, and OpenAL on each platform. The support ranges from

system to system, so particular features, such as glutEnterGameMode() or

glutSetCursor(), may not have consistent results across all systems. For such problems,

alternate solutions need to be found, which may result in resorting to some system-

specific API code. This is an undesirable answer to the problem, but it may be

necessary if there are no other suitable solutions.

44

During the creation of PIGE, the project and its tutorials received some attention

from people who were also trying to use OpenGL or OpenAL on Mac OS X. Since

OpenAL is still a fairly young technology, it has not garnered a significant amount of

attention and documentation from developers. As of this writing, the PIGE web site has

become the only centralized location to discuss how to set up projects for both OpenGL

and OpenAL on Windows, Linux, and Macintosh.

Future

The gaming industry is always evolving, continually pushing the mantra “Bigger,

Better, Faster, More” in the attempt to be the first to bring to market the latest and

greatest in gaming technology. This current incarnation of PIGE is in no small way

limited to just what is currently available. PIGE has been designed as a starting platform

from where to launch and extend projects.

Future additions to PIGE are, but not limited to, the ability to read in models

(OBJ, Milkshape, Quake), creating a world editor, advanced lighting techniques, further

game physics, fonts, binary space partitions (BSP), shadowing effects, importing other

image types, networking, and optimizations for specific computer hardware.

One of the most time consuming parts of creating an OpenGL scene with PIGE

is that it needs to be created by hand. A more efficient way to circumvent this problem

is to follow the same technique many game developers use to design their game worlds

– by using a world editor, which easily allows the level designer to piece together a

scene in far less time than it would take to code by hand.

45

Even though the creation of PIGE was enhanced through tools such as OpenGL,

GLUT, and OpenAL, they are not always as powerful as the system APIs, and if these

OS specific APIs are used, they should conform to PIGE’s standards to remain modular

and easy to swap out with other tools when necessary.

PIGE was developed primarily to create games. PIGE will be used to continue

the development for the graphical front end of Psychomancer.

The PIGE website is located at http://www.edenwaith.com/products/pige/ [4],

containing all of the tutorials, source code, and example projects. Further work on PIGE

will be archived at this website.

46

BIBLIOGRAPHY

47

BIBLIOGRAPHY

[1] Angel, Edward. OpenGL : A Primer. Addison-Wesley, 2002.

[2] Cfxweb.net. “3D Graphics Programming.”
http://www.cfxweb.net/~cfxamir/tutorials.html.

[3] Dev-gallery.com. “Using OpenAL and OpenGL to create a 3D application with 3D
sound”. http://www.dev-
gallery.com/programming/openAL/basic/basicOpenAL_1.htm.

[4] Edenwaith.com. "PIGE". http://www.edenwaith.com/products/pige/.

[5] fsf.org. "GNU General Public License." http://www.fsf.org/copyleft/gpl.html.

[6] Garagegames.com. "Torque Game Engine SDK."
http://www.garagegames.com/pg/product/view.php?id=1.

[7] Hall, John R. Programming Linux Games. Linux Journal Press, 2001.

[8] idsoftware.com. “id Software’s Technology Licensing Program”.
http://www.idsoftware.com/business/home/technology/techlicense.php.

[9] Lengyle, Eric. Mathematics for 3D Game Programming & Computer Graphics.
Charles River Media, Inc., 2002.

[10] NeHe Productions. “NeHe Productions”. http://nehe.gamedev.net.

[11] OpenAL.org. “OpenAL home page”. http://www.openal.org.

[12] OpenGL.org. “OpenGL home page”. http://www.opengl.org.

[13] PyOpenGL. “OpenGL.GLUT.glutSpecialUpFunc”
http://pyopengl.sourceforge.net/documentation/ref/glut/glutspecialupfunc.html.

[14] Szymczyk, Mark. Mac Game Programming. Premier Press, 2002.

[15] Woo, Mason, Jackie Neider, Tom Davis, Dave Shreiner. OpenGL Programming
Guide, Third Edition. Addison-Wesley, 1999.

48

APPENDICES

49

APPENDIX A

PIGE SOURCE CODE

50

// ===
// main.cpp
// ===

#include <pige_mac.h>

// #include <pige_linux.h>
// #include <pige_win.h>

// ===
// Global Variables
// ===
#define NUM_BUFFERS 2
#define NUM_SOURCES 2
#define NUM_ENVIRONMENTS 1

ALfloat listenerPos[] = {0.0,0.0,4.0};
ALfloat listenerVel[] = {0.0,0.0,0.0};
ALfloat listenerOri[] = {0.0,0.0,1.0, 0.0,1.0,0.0};

ALfloat source0Pos[] = { -2.0, 0.0, 0.0};
ALfloat source0Vel[] = { 0.0, 0.0, 0.0};

ALfloat source1Pos[] = { 2.0, 0.0, 0.0};
ALfloat source1Vel[] = { 0.0, 0.0, 0.0};

ALuint buffer[NUM_BUFFERS];
ALuint source[NUM_SOURCES];
ALuint environment[NUM_ENVIRONMENTS];

ALsizei size,freq;
ALenum format;
ALvoid *data;

TGAImageRec textures[32]; // for the cursor icon

enum cursor_types {DO, LOOK, TALK, INVENTORY};
enum cursor_types cursor_type = LOOK;

int light1_on = 0; // 0 is on, 1 is off
int window;
int mouse_entry = 1;
int kWindowWidth = 1024;
int kWindowHeight = 768;
static int mouse_x = 0;
static int mouse_y = kWindowHeight;
int fullscreen = 0;
int isDirectionalKeyDown = false;
int directional_key;

float cursor_x = 0;
float cursor_y = 0;
float cursor_z = 0.0;

51

float old_x = 0;
float old_y = kWindowHeight;
float mouse_sensitivity= 0.0009799849;
float mouse_sensitivity_y= 0.0013;
float cursor_size = 0.10;

float x_camera = 0.0;
float y_camera = -0.5;
float z_camera = -3.0;

int x_angle = 0;
int y_angle = 0;
int z_angle = 0;

int lights_on = false;
int is_light_on = true;

int isSphereNoisy = false;

int objectID = 0;

int random_red = get_random(0, 255);
int random_green = get_random(0, 255);
int random_blue = get_random(0, 255);

int sphere_red = 255; // The three RGB components of
int sphere_green = 255; // the floating sphere which
int sphere_blue = 255; // will change colors randomly
int sphere_direct = 1; // 1 the sphere is going up
 // 0 the sphere is going down
float sphere_height = 0.0;

float l1z_pos = 3.5;

GLfloat specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat shininess[] = { 100.0 };
GLfloat LightAmbient[] = { 0.5f, 0.5f, 0.5f, 1.0f };
GLfloat LightDiffuse[] = { 1.0f, 1.0f, 1.0f, 1.0f };
GLfloat LightPosition[] = { 0.0f, 0.5f, l1z_pos, 1.0f };

GLfloat xrot; // X Rotation
GLfloat yrot; // Y Rotation
GLfloat xspeed; // X Rotation Speed
GLfloat yspeed; // Y Rotation Speed

GLfloat walkbias = 0;
GLfloat walkbiasangle = 0;

GLfloat lookupdown = 0.0f;
const float piover180 = 0.0174532925f;

float heading = 0.0;
float xpos = 0.0;
float zpos = 3.0;

52

Vector3D egoPosition(0.0, 0.0, 3.0);
Vector3D egoVelocity(0.0, 0.0, 0.05);
float egoRadius = 1.5;

// ===
// Prototypes
// ===

// display, draw, & initialize
void draw_cursor(int, int);
void display();
GLvoid drawShapes(GLenum mode);
void InitGL();
void reshape(int w, int h);
void Idle();
// input functions
void processMouse(int button, int state, int x, int y) ;
int retrieveObjectID(int x, int y);
void PassiveMouseFunc(int, int);
void EntryFunc(int state);
void keyboard(unsigned char key, int x, int y);
void specialKeys(int key, int x, int y);
void specialKeysUp(int key, int x, int y);

// ===
// int main(int, char *[])
// ===
int main(int argc, char *argv[])
{

 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(kWindowWidth, kWindowHeight);

 alutInit(&argc, argv) ;

 window = glutCreateWindow("Psychomancer");

 glutGameModeString("1024x768:24@72");
 glutEnterGameMode();

 glutSetCursor(GLUT_CURSOR_NONE); // make the cursor disappear

 InitGL();
 openal_init();

 glutReshapeFunc(reshape);
 glutIdleFunc(Idle);
 glutDisplayFunc(display);
 glutMouseFunc(processMouse);
 glutPassiveMotionFunc(PassiveMouseFunc);

53

 glutMotionFunc(MovingMouseFunc);
 glutEntryFunc(EntryFunc);
 glutKeyboardFunc(keyboard);
 glutSpecialFunc(specialKeys);
 glutSpecialUpFunc(specialKeysUp);
 glClearColor(0, 0, 0, 0);
 glutMainLoop();

 return 0;

}

// ===
// void draw_cursor(int x, int y)
// ===
void draw_cursor(int x, int y)
{
 if (cursor_type == DO)
 {
 glBindTexture(GL_TEXTURE_2D, texture[0]);
 }
 else if (cursor_type == LOOK)
 {
 glBindTexture(GL_TEXTURE_2D, texture[1]);
 }
 else if (cursor_type == TALK)
 {
 glBindTexture(GL_TEXTURE_2D, texture[2]);
 }
 else // INVENTORY ITEM
 {
 glBindTexture(GL_TEXTURE_2D, texture[1]); // 3
 }

 glMatrixMode(GL_PROJECTION); // Select Projection
 glPushMatrix(); // Push The Matrix
 glLoadIdentity(); // Reset The Matrix
 glOrtho(0, 1 , 0 , 1, -1, 1); // Select Ortho Mode (640x480)
 glMatrixMode(GL_MODELVIEW); // Select Modelview Matrix
 glPushMatrix(); // Push The Matrix
 glLoadIdentity();

 glBegin (GL_QUADS);

 glColor4f(1.0, 1.0, 1.0, 0.5);
 glTexCoord2f(0.0f, 0.0f);

glVertex3f(cursor_x, cursor_y, 1.0);
 glTexCoord2f(1.0f, 0.0f);

glVertex3f(cursor_x + cursor_size, cursor_y, 1.0);
 glTexCoord2f(1.0f, 1.0f);

glVertex3f(cursor_x + cursor_size, cursor_y+cursor_size, 1.0);

54

 glTexCoord2f(0.0f, 1.0f);
glVertex3f(cursor_x, cursor_y + cursor_size, 1.0);

 glEnd();

 glMatrixMode(GL_PROJECTION); // Select Projection
 glPopMatrix(); // Pop The Matrix
 glMatrixMode(GL_MODELVIEW); // Select Modelview
 glPopMatrix();

 glutPostRedisplay();
}

// ===
// void check_colors()
// ===
void check_colors()
{
 int correct_color = 0;

 if (sphere_red < random_red)
 {
 sphere_red++;
 }
 else if (sphere_red > random_red)
 {
 sphere_red--;
 }
 else
 {
 correct_color++;
 }

 if (sphere_green < random_green)
 {
 sphere_green++;
 }
 else if (sphere_green > random_green)
 {
 sphere_green--;
 }
 else
 {
 correct_color++;
 }

 if (sphere_blue < random_blue)
 {
 sphere_blue++;
 }
 else if (sphere_blue > random_blue)
 {
 sphere_blue--;

55

 }
 else
 {
 correct_color++;
 }

 // new color as been met. Make a new random color
 if (correct_color >= 3)
 {
 random_red = get_random(0, 255);
 random_blue = get_random(0, 255);
 random_green = get_random(0, 255);
 }

}

// ===
// void display()
// Call non-transparent items first, then set GL_BLEND, then call
// the transparent/translucent items
// ===
void display(void)
{
 // Clear The Screen And The Depth Buffer
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 drawShapes(GL_RENDER);

 // The following part cannot be in drawShapes() or the objectID
 // function will not work properly and return the properly
 // selected item
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glDepthMask(GL_FALSE);

 draw_cursor(mouse_x, mouse_y);

 glDepthMask(GL_TRUE);
 glDisable(GL_BLEND);
 glDisable(GL_TEXTURE_2D);

 glutSwapBuffers();
 glFlush();
}

// ===
// drawShapes(GLenum mode)
// ===
GLvoid drawShapes(GLenum mode)
{
 glInitNames();
 glPushName(0);

56

 glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

 glLoadIdentity();
glTranslatef(0.5f,0.0f, 0.5f);

 glTranslatef(-xpos, y_camera, -zpos);

 if (GL_SELECT == mode)
 {
 glLoadName(3);
 }

 glColor3f(0.0f,0.0f,1.0f);
 glutSolidTorus(0.5, 3.0, 20, 20);

 glLoadIdentity();

 glPushMatrix();

 glRotatef((float)x_angle, 1.0, 0.0, 0.0);
 glRotatef(360.0f - yrot, 0.0, 1.0, 0.0);
 glRotatef((float)z_angle, 0.0, 0.0, 1.0);

 glTranslatef(-xpos, y_camera, -zpos);

 // draw objects which do not utilize textures

 glPushMatrix();

 if (GL_SELECT == mode)
 {
 glLoadName(1);
 }

 check_colors();
 glColor3f((float)sphere_red/255.0, (float)sphere_green/255.0,

 (float)sphere_blue/255.0);

 glTranslatef(0.0, 0.5 + sphere_height, 0.5);

 glutSolidSphere(0.1, 20, 20);

 if (1 == sphere_direct)
 {
 if (sphere_height < 0.25)
 {
 sphere_height += 0.005;
 }
 else
 {
 sphere_direct = 0;
 }
 }
 else

57

 {
 if (sphere_height > 0.0)
 {
 sphere_height -= 0.005;
 }
 else
 {
 sphere_direct = 1;
 }
 }

 glPopMatrix();

 if (lights_on == FALSE)
 {
 glColor3f(1.0f, 1.0f, 1.0f);
 }

 if (GL_SELECT == mode)
 {
 glLoadName(2);
 }

 // now draw objects which utilize textures
 glEnable(GL_TEXTURE_2D);

 glBindTexture(GL_TEXTURE_2D, texture[4]);

 glBegin (GL_QUADS);

 // (0,1)--------(1,1)
 // | |
 // (0,0)--------(1,0)

 // floor
 for (int i = 0; i < 5; i++)
 {
 for (int j = 0; j < 5; j++)
 {
 glNormal3d(0.0, 1.0, 0.0);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-2.5+i, 0.0, 0.0+j);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.5+i, 0.0, 0.0+j);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.5+i, 0.0, -1.0+j);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-2.5+i, 0.0, -1.0+j);

 }
 }

 glEnd();

 // bind the ceiling texture

58

 glBindTexture(GL_TEXTURE_2D, texture[5]);

 glBegin(GL_QUADS);
 // ceiling
 for (int i = 0; i < 5; i++)
 {
 for (int j = 0; j < 5; j++)
 {
 glNormal3d(0.0, -1.0, 0.0);
 glTexCoord2f(0.0f, 0.0f);

glVertex3f(-2.5 + i, 1.0, 0.0 + j);
 glTexCoord2f(1.0f, 0.0f);

glVertex3f(-1.5 + i, 1.0, 0.0 + j);
 glTexCoord2f(1.0f, 1.0f);

glVertex3f(-1.5 + i, 1.0, -1.0 + j);
 glTexCoord2f(0.0f, 1.0f);

glVertex3f(-2.5 + i, 1.0, -1.0 + j);

 }
 }
 glEnd();

 // Remember: this call needs to be outside the glBegin - glEnd
 glBindTexture(GL_TEXTURE_2D, texture[3]);

 glBegin(GL_QUADS);
 // left & right walls
 for (int i = 0; i < 2; i++)
 {
 for (int j = 0; j < 5; j++)
 {

if (0 == i)
 {
 glNormal3d(-1.0, 0.0, 0.0);
 }
 else
 {
 glNormal3d(1.0, 0.0, 0.0);
 }

 glTexCoord2f(0.0f, 0.0f);
glVertex3f(-2.5 + i*5, 1.0, 0.0 + j);

 glTexCoord2f(1.0f, 0.0f);
glVertex3f(-2.5 + i*5, 0.0, 0.0 + j);

 glTexCoord2f(1.0f, 1.0f);
glVertex3f(-2.5 + i*5, 0.0, -1.0 + j);

 glTexCoord2f(0.0f, 1.0f);
glVertex3f(-2.5 + i*5, 1.0, -1.0 + j);

 }
 }

 // front and back walls
 for (int i = 0; i < 2; i++)
 {

59

 for (int j = 0; j < 5; j++)
 {

if (0 == i)
 {
 glNormal3d(0.0, 0.0, -1.0);
 }
 else
 {
 glNormal3d(0.0, 0.0, 1.0);
 }

 glTexCoord2f(0.0f, 0.0f);
glVertex3f(-1.5 + j, 1.0, -1.0 + i*5);

 glTexCoord2f(1.0f, 0.0f);
glVertex3f(-1.5 + j, 0.0, -1.0 + i*5);

 glTexCoord2f(1.0f, 1.0f);
glVertex3f(-2.5 + j, 0.0, -1.0 + i*5);

 glTexCoord2f(0.0f, 1.0f);
glVertex3f(-2.5 + j, 1.0, -1.0 + i*5);

 }
 }

 // raised floor
 for (int i = 0; i < 5; i++)
 {
 for (int j = 0; j < 2; j++)
 {

glNormal3d(0.0, 1.0, 0.0);
 glTexCoord2f(0.0f, 0.0f);

glVertex3f(-2.5 + i, 0.25, 0.0 + j);
 glTexCoord2f(1.0f, 0.0f);

glVertex3f(-1.5 + i, 0.25, 0.0 + j);
 glTexCoord2f(1.0f, 1.0f);

glVertex3f(-1.5 + i, 0.25, -1.0 + j);
 glTexCoord2f(0.0f, 1.0f);

glVertex3f(-2.5 + i, 0.25, -1.0 + j);
 }
 }

 // front panels to raised area
 for (int i = 2; i < 5; i++)
 {
 glNormal3d(0.0, 0.0, -1.0);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.5 + i, 0.25, 1.0);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.5 + i, 0.0, 1.0);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-2.5 + i, 0.0, 1.0);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-2.5 + i, 0.25, 1.0);

 }

 // front part of bedroom wall
 for (int i = 0; i < 2; i++)
 {

60

 glNormal3d(0.0, 0.0, -1.0);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.5 + i, 1.0, 1.0);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.5 + i, 0.0, 1.0);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-2.5 + i, 0.0, 1.0);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-2.5 + i, 1.0, 1.0);

 }

 // side of bedroom wall
 for (int i = 0; i < 2; i++)
 {

 glNormal3d(-1.0, 0.0, 0.0);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-0.5, 1.0, 0.0 + i);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-0.5, 0.0, 0.0 + i);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-0.5, 0.0, -1.0 + i);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, 1.0, -1.0 + i);
 }

 glEnd();

 glPopMatrix();

}

// ===
// void InitGL()
// ===
void InitGL()
{

 LoadGLTextures(texture);

 // move the cursor to the set (x,y) coordinates
 glutWarpPointer(kWindowWidth/2, kWindowHeight/2);

 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glClearDepth(1.0);
 glDepthFunc(GL_LESS);
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glShadeModel(GL_SMOOTH);

 glViewport(0, 0, kWindowWidth, kWindowHeight);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 gluPerspective(45.0f, (GLfloat) kWindowWidth /
 (GLfloat) kWindowHeight, 0.1f, 100.0f);

 // Calculate the Aspect Ratio of the window
 glMatrixMode(GL_MODELVIEW);

 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, shininess);

61

 glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
 glEnable(GL_COLOR_MATERIAL);

 glLightfv(GL_LIGHT1, GL_AMBIENT, LightAmbient);
 glLightfv(GL_LIGHT1, GL_DIFFUSE, LightDiffuse);
 glLightfv(GL_LIGHT1, GL_POSITION, LightPosition);

 if (true == is_light_on)
 {
 glEnable(GL_LIGHTING);
 }
 glEnable(GL_LIGHT1);

}

// ===
// void reshape(int w, int h)
// ===
void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();

 gluPerspective(45.0, (GLfloat) w / (GLfloat) h, 0.1, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

// ===
// void Idle()
// ===
void Idle()
{
 glutPostRedisplay();
}

// ===
// void processMouse(int button, int state, int x, int y)
// ===
void processMouse(int button, int state, int x, int y)
{

 if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
 {

 objectID = retrieveObjectID(x, y);

 if ((1 == objectID) && (FALSE == isSphereNoisy) &&
 (DO == cursor_type))

 {

62

 alSourcePlay(source[1]);
 isSphereNoisy = TRUE;
 }
 else if ((1 == objectID) && (TRUE == isSphereNoisy) &&

 (DO == cursor_type))
 {
 alSourceStop(source[1]);
 isSphereNoisy = FALSE;
 }

 glutPostRedisplay();
 }
 else if (button == GLUT_MIDDLE_BUTTON)
 {

// Do nothing for now
 }
 else if (button == GLUT_RIGHT_BUTTON)
 {
 if (state == GLUT_DOWN)
 {
 switch (cursor_type)
 {
 case DO: cursor_type = LOOK; break;
 case LOOK: cursor_type = TALK; break;
 case TALK: cursor_type = INVENTORY; break;
 case INVENTORY: cursor_type = DO; break;
 default: cursor_type = DO;
 }

 glutPostRedisplay();
 }
 }
}

// ===
// int retrieveObjectID(int x, int y)
// ===
int retrieveObjectID(int x, int y)
{
 int objectsFound = 0;
 GLint viewportCoords[4] = {0};
 GLuint selectBuffer[32] = {0};

 glSelectBuffer(32, selectBuffer);
 glGetIntegerv(GL_VIEWPORT, viewportCoords);
 glMatrixMode(GL_PROJECTION);

 glPushMatrix();
 glRenderMode(GL_SELECT);
 glLoadIdentity();
 gluPickMatrix(x, viewportCoords[3] - y, 2, 2, viewportCoords);

63

 gluPerspective(45.0f, (float)kWindowWidth/
 (float)kWindowHeight, 0.1f, 150.0f);

 glMatrixMode(GL_MODELVIEW);

 drawShapes(GL_SELECT);

 objectsFound = glRenderMode(GL_RENDER);

 glMatrixMode(GL_PROJECTION);

 glPopMatrix();

 glMatrixMode(GL_MODELVIEW);

 if (objectsFound > 0)
 {
 GLuint lowestDepth = selectBuffer[1];

 int selectedObject = selectBuffer[3];

 for (int i = 1; i < objectsFound; i++)
 {
 if (selectBuffer[(i*4)+1] < lowestDepth)
 {
 lowestDepth = selectBuffer[(i*4)+1];
 selectedObject = selectBuffer[(i*4)+3];
 }
 }

 return selectedObject;

 }

 return 0;
}

// ===
// void PassiveMouseFunc(int x, int y)
// Find out where the mouse cursor is when buttons aren't pressed
// ===
void PassiveMouseFunc(int x, int y)
{
 // global information to know where the cursor is
 mouse_x = x;
 mouse_y = y;

 // Between each 'move', need to calculate how far the cursor has
 // moved from the previous position to the new position, and then
 // calculate how far the cursor icon is to be moved.
 if(mouse_entry == 1) // if cursor is in game screen
 {
 cursor_x += mouse_sensitivity * (x - old_x);
 cursor_y += -mouse_sensitivity_y * (y - old_y);

64

 old_x = x;
 old_y = y;

 }

}

// ===
// void EntryFunc(int x, int y)
// ===
void EntryFunc(int state)
{
 if (state == GLUT_LEFT)
 {
 mouse_entry = 0;
 }
 else // if (state == GLUT_ENTERED)
 {
 mouse_entry = 1;
 }
}

// ===
// void keyboard(unsigned char key, int x, int y)
// ===
void keyboard(unsigned char key, int x, int y)
{
 switch (key)
 {
 case 27:
 glutLeaveGameMode();
 glutDestroyWindow(window);
 exit(0);
 break;
 case 'l':
 case 'L':

 if (is_light_on == true)
 {
 is_light_on = false;
 glDisable(GL_LIGHTING);
 }
 else
 {
 is_light_on = true;
 glEnable(GL_LIGHTING);
 }
 break;
 case 'q':
 case 'Q':

 glutDestroyWindow(window);
 glutLeaveGameMode(); exit(0); break;

65

 case 'x':
 x_angle = (x_angle + 5) % 360;

 glutPostRedisplay();
 break;
 case 'X':
 x_angle = (x_angle - 5) % 360;

 glutPostRedisplay();
 break;
 case '\t':
 switch (cursor_type)
 {
 case DO: cursor_type = LOOK; break;
 case LOOK: cursor_type = TALK; break;
 case TALK: cursor_type = INVENTORY; break;
 case INVENTORY: cursor_type = DO; break;
 default: cursor_type = DO;
 }

 cout << "Cursor_type: " << cursor_type << endl;
 glutPostRedisplay();
 break;
 case '\n':
 cout << "Saw ENTER" << endl;
 break;
 case '\r':
 cout << "Saw Mac ENTER" << endl;

 // '\r' is the Mac version of ENTER
 break;

 }
}

// ===
// void specialKeys(int key, int x, int y)
// ===
void specialKeys(int key, int x, int y)
{
 Vector3D egoPosAfter;
 bool is_collision = false;

 switch(key)
 {
 case GLUT_KEY_F3:
 if (lights_on == TRUE)
 {
 lights_on = FALSE;
 }
 else
 {
 lights_on = TRUE;
 }

66

 break;
 case GLUT_KEY_UP:

 egoPosAfter = egoPosition - egoVelocity;

 // check for collision with all available planes
 for (int i = 0; i < 2; i++)
 {

 float D0 = 0.0, D1 = 0.0;
 Vector3D world_normals[2] = {

 Vector3D(0.0, 0.0, -1.0), Vector3D(0.0, 0.0, 1.0)};

 D0 = egoPosition.dotProduct(world_normals[i]);
// before movement

 D1 = egoPosAfter.dotProduct(world_normals[i]);
// after movement

 // check distance to plane

 if (fabs(D1) < egoRadius)
 {
 // the sphere is too close to plane
 is_collision = true;
 }

 // collision check
 if ((D0 > 0 && D1 < 0) || (D0 < 0 && D1 > 0))
 {

 // ego has through the plane
 is_collision = true;

 }
 }

 if (false == is_collision)
 {

// move the sphere
egoPosition = egoPosAfter;

 z_camera += 1.0;
 xpos -= (float)sin(heading*piover180) * 0.05f;

zpos -= (float)cos(heading*piover180) * 0.05f;

 egoVelocity.setVector((float)sin(heading*piover180) *
0.05f, 0.0, (float)cos(heading*piover180) * 0.05f);

if (walkbiasangle >= 359.0f)
walkbiasangle = 0.0f;

else
walkbiasangle+= 10;

walkbias = (float)sin(walkbiasangle *
 piover180)/20.0f;

 // Play the footsteps wave
 if (isDirectionalKeyDown == false)

67

 {
 alSourcePlay(source[0]);
 isDirectionalKeyDown = true;
 }
 }

 glutPostRedisplay();
 break;
 case GLUT_KEY_DOWN:

 egoPosAfter = egoPosition + egoVelocity;

 // check for collision with all available planes
 for (int i = 0; i < 2; i++)
 {

 float D0 = 0.0, D1 = 0.0;
 Vector3D world_normals[2] = {

 Vector3D(0.0, 0.0, -1.0), Vector3D(0.0, 0.0, 1.0)};

 D0 = egoPosition.dotProduct(world_normals[i]);
// before movement

 D1 = egoPosAfter.dotProduct(world_normals[i]);
// after movement

 // check distance to plane

 if (fabs(D1) < egoRadius)
 {
 // the sphere is too close to plane
 is_collision = true;
 }

 // collision check
 if ((D0 > 0 && D1 < 0) || (D0 < 0 && D1 > 0))
 {

 // ego has through the plane
 is_collision = true;

 }
 }

 if (false == is_collision)
 {

// move the sphere
egoPosition = egoPosAfter;

 z_camera -= 1.0;
 xpos += (float)sin(heading*piover180) * 0.05f;

zpos += (float)cos(heading*piover180) * 0.05f;

 egoVelocity.setVector((float)sin(heading*piover180) *
0.05f, 0.0, (float)cos(heading*piover180) * 0.05f);

if (walkbiasangle <= 1.0f)
walkbiasangle = 359.0f;

else
walkbiasangle-= 10;

68

walkbias = (float)sin(walkbiasangle *
 piover180)/20.0f;

 // Play the footsteps wave
 if (isDirectionalKeyDown == false)
 {
 alSourcePlay(source[0]);
 isDirectionalKeyDown = true;
 }
 }

 glutPostRedisplay();
 break;
 case GLUT_KEY_RIGHT:

 y_angle = (y_angle + 5) % 360;
 heading -= 2.0f;
 yrot = heading;

 egoVelocity.setVector((float)sin(heading*piover180) *
 0.05f, 0.0, (float)cos(heading*piover180) * 0.05f);
 glutPostRedisplay();

 break;
 case GLUT_KEY_LEFT:

 y_angle = (y_angle - 5) % 360;
 heading += 2.0f;
 yrot = heading;

 egoVelocity.setVector((float)sin(heading*piover180) *
 0.05f, 0.0, (float)cos(heading*piover180) * 0.05f);
 glutPostRedisplay();

 break;
 case GLUT_KEY_PAGE_DOWN:
 x_angle = (x_angle + 5) % 360;

 glutPostRedisplay();
 break;
 case GLUT_KEY_PAGE_UP:
 x_angle = (x_angle - 5) % 360;

 glutPostRedisplay();
 break;

default:
 break;

 }
}

// ===
// void specialKeysUp(int key, int x, int y)
// set the isDirectionalKeyUp to false if necessary
// Also it is possible to create an array of the special keys, so
// info can be contained in an array instead of just relying on
// one or two boolean type values
// ===
void specialKeysUp(int key, int x, int y)
{
 switch (key)
 {

69

 case GLUT_KEY_RIGHT :
glutPostRedisplay();
break;

 case GLUT_KEY_LEFT :
glutPostRedisplay();
break;

 case GLUT_KEY_UP :
 alSourceStop(source[0]);
 isDirectionalKeyDown = false;
 glutPostRedisplay();

break;
 case GLUT_KEY_DOWN :
 alSourceStop(source[0]);
 isDirectionalKeyDown = false;
 glutPostRedisplay();

break;
 }
}

70

// ===
// pige_linux.h
// Linux main header
// ===

#define TRUE 0
#define FALSE 1

// include files
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>

#include <GL/glut.h>

#include <AL/al.h>
#include <AL/alut.h>

#include "LoadTGA.h"
#include "LoadGLTextures_win_linux.h"

#include "openal_linux.h"

#include "get_random.h"

#include "Vector3D.h"

unsigned int texture[32];

71

// ===
// pige_mac.h
// Macintosh main header
// ===

// include files
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>

#include <GLUT/glut.h>
#include <OpenAL/alut.h>

#include "LoadTGA.h"
#include "LoadGLTextures_mac.h"

#include "openal_mac.h"

#include "get_random.h"

#include "Vector3D.h"

unsigned long texture[32];

72

// ===
// pige_win.h
// Windows main header
// ===

#define TRUE 0
#define FALSE 1

// include files
#include <iostream.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#include <GL/glut.h>

// In CodeWarrior, add the path (Target Settings -> Access Path)
// c:\Program Files\Creative Labs\OpenAL 1.0 SDK\Include\
#include "altypes.h"
#include "al.h"
#include "alu.h"
#include "alut.h"

#include "LoadTGA.h"
#include "LoadGLTextures_win_linux.h"

#include "openal_win.h"

#include "get_random.h"

#include "Vector3D.h"

unsigned int texture[32];

73

// ===
// LoadTGA.h
// load in textures
// ===

// ===
// TGAImageRec structure
// ===
typedef struct TGAImageRec
{
 GLubyte *data; // Image data (Up to 32 bits)
 GLuint bpp; // Image color depth in bits per pixel
 GLuint sizeX; // Image width
 GLuint sizeY; // Image height
}TGAImageRec;

// ===
// TGAImageRec* LoadTGA(char *filename)
// ===
TGAImageRec* LoadTGA(char *filename)
{
 int i = 0;

GLubyte TGAheader[12]= {0,0,2,0,0,0,0,0,0,0,0,0};
GLubyte TGAcompare[12]; // Used to compare TGA header

 GLubyte header[6]; // First 6 Useful bytes from header
 GLuint bytesPerPixel; // Holds number of bytes per pixel used

GLuint imageSize; // Used to store image size
GLuint temp; // Temporary variable
// int type = GL_RGBA; // Set default GL mode to RGBA (32 BPP)
TGAImageRec *texture; // Texture structure to return
FILE *file; // Image file to be opened

 // bytesPerPixel, imageSize, and temp can be 'int' instead of
 // GLUint for Mac OS X. But for consistency among the various

// platforms, just keep as GLuint.

file = fopen(filename, "rb");

 if((file == NULL) ||
(fread(TGAcompare, 1, sizeof(TGAcompare), file) !=
sizeof(TGAcompare)) ||
(memcmp(TGAheader, TGAcompare, sizeof(TGAheader)) != 0) ||
(fread(header, 1, sizeof(header), file)
!= sizeof(header)))

 {
printf("Error: could not find or open file %s\n", filename);

 fclose(file);
return NULL;

 }

 texture = (TGAImageRec*)malloc(sizeof(TGAImageRec));

74

texture->sizeX = header[1] * 256 + header[0];
texture->sizeY = header[3] * 256 + header[2];

 if((texture->sizeX <= 0) || (texture->sizeY <= 0) ||
 ((header[4] != 24) && (header[4] != 32)))
{

fclose(file);
free(texture);
return NULL;

 }

texture->bpp = header[4];
bytesPerPixel = texture->bpp/8;

imageSize = texture->sizeX * texture->sizeY * bytesPerPixel;

texture->data = (GLubyte*)malloc(imageSize);

if((texture->data == NULL) ||
 (fread(texture->data, 1, imageSize, file) != imageSize))
{

if(texture->data != NULL)
 {

 free(texture->data);
 }

fclose(file);
free(texture);
return NULL;

}

 // For Linux and Windows, imageSize may need to be
 // casted as an int.

for (i = 0; i < (int) imageSize ; i += bytesPerPixel)
{

temp = texture->data[i];
texture->data[i] = texture->data[i + 2];

 texture->data[i + 2] = temp;

 }

fclose(file);

return texture;
}

75

// ===
// LoadGLTextures_mac.h
// Macintosh version to load in textures
// ===

// ===
// void LoadTextures(unsigned long texture[])
// ===
void LoadGLTextures(unsigned long texture[])
{
 GLuint type = GL_RGBA;
 TGAImageRec *local_tex[7];

 // alpha images should be 32 bit or it won't work!
 local_tex[0] = LoadTGA("do_alpha32.tga"); // DO icon
 local_tex[1] = LoadTGA("eye_alpha.tga"); // LOOK icon
 local_tex[2] = LoadTGA("talk_alpha32.tga"); // TALK icon
 local_tex[3] = LoadTGA("wood-1.tga"); // wall texture
 local_tex[4] = LoadTGA("hardwoodfloor32.tga"); // floor texture
 local_tex[5] = LoadTGA("ceiling.tga"); // ceiling texture

 for (int i = 0; i < 6; i++)
 {

 glGenTextures(1, &texture[i]);
 glBindTexture(GL_TEXTURE_2D, texture[i]);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

 if (local_tex[i]->bpp == 24)
{

 type = GL_RGB;
}

 else
 {
 type = GL_RGBA;
 }

 glTexImage2D(GL_TEXTURE_2D, 0, type, local_tex[i]->sizeX,
local_tex[i]->sizeY, 0, type, GL_UNSIGNED_BYTE, local_tex[i]->data);

 }

}

76

// ===
// LoadGLTextures_win_linux.h
// Windows & Linux version to load in textures
// ===

// ===
// void LoadTextures(unsigned int texture[])
// ===
void LoadGLTextures(unsigned int texture[])
{
 GLuint type = GL_RGBA;
 TGAImageRec *local_tex[7];

 // alpha images should be 32 bit or it won't work!
 local_tex[0] = LoadTGA("do_alpha32.tga"); // DO icon
 local_tex[1] = LoadTGA("eye_alpha.tga"); // LOOK icon
 local_tex[2] = LoadTGA("talk_alpha32.tga"); // TALK icon
 local_tex[3] = LoadTGA("wood-1.tga"); // wall texture
 local_tex[4] = LoadTGA("hardwoodfloor32.tga"); // floor texture
 local_tex[5] = LoadTGA("ceiling.tga"); // ceiling texture

 for (int i = 0; i < 6; i++)
 {

 glGenTextures(1, &texture[i]);
 glBindTexture(GL_TEXTURE_2D, texture[i]);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

 if (local_tex[i]->bpp == 24)
{

 type = GL_RGB;
}

 else
 {
 type = GL_RGBA;
 }

 glTexImage2D(GL_TEXTURE_2D, 0, type, local_tex[i]->sizeX,
local_tex[i]->sizeY, 0, type, GL_UNSIGNED_BYTE, local_tex[i]->data);

 }

}

77

// ===
// openal_linux.h
// Linux version to load in sound
// ===

// ===
// void openal_init()
// ===
void openal_init(void)
{
 ALboolean al_bool = 0;

 alListenerfv(AL_POSITION,listenerPos);
 alListenerfv(AL_VELOCITY,listenerVel);
 alListenerfv(AL_ORIENTATION,listenerOri);

 alGetError(); // clear any error messages

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating buffers !!\n");
 exit(1);
 }
 else
 {
 printf("init() - No errors yet.\n");
 }

 // Generate buffers, or else no sound will happen
 alGenBuffers(NUM_BUFFERS, buffer);

 alutLoadWAVFile((ALbyte *)"Footsteps.wav", &format, &data, &size,
 &freq, &al_bool);

 alBufferData(buffer[0],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alutLoadWAVFile((ALbyte *)"a.wav", &format, &data, &size, &freq,
 &al_bool);

 alBufferData(buffer[1],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alGetError(); /* clear error */
 alGenSources(NUM_SOURCES, source);

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating sources !!\n");
 exit(2);
 }
 else
 {
 printf("init - no errors after alGenSources\n");

78

 }

 alSourcef(source[0],AL_PITCH,1.0f);
 alSourcef(source[0],AL_GAIN,1.0f);
 alSourcefv(source[0],AL_POSITION,source0Pos);
 alSourcefv(source[0],AL_VELOCITY,source0Vel);
 alSourcei(source[0],AL_BUFFER,buffer[0]);
 alSourcei(source[0],AL_LOOPING,AL_TRUE);

 alSourcef(source[1],AL_PITCH,1.0f);
 alSourcef(source[1],AL_GAIN,1.0f);
 alSourcefv(source[1],AL_POSITION,source1Pos);
 alSourcefv(source[1],AL_VELOCITY,source1Vel);
 alSourcei(source[1],AL_BUFFER,buffer[1]);
 alSourcei(source[1],AL_LOOPING,AL_TRUE);

}

79

// ===
// openal_mac.h
// Macintosh version to load in sound
// ===

// ===
// void openal_init()
// ===
void openal_init(void)
{
 alListenerfv(AL_POSITION,listenerPos);
 alListenerfv(AL_VELOCITY,listenerVel);
 alListenerfv(AL_ORIENTATION,listenerOri);

 alGetError(); // clear any error messages

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating buffers !!\n");
 exit(1);
 }
 else
 {
 printf("init() - No errors yet.\n");
 }

 // Generate buffers, or else no sound will happen
 alGenBuffers(NUM_BUFFERS, buffer);

 alutLoadWAVFile("Footsteps.wav", &format, &data, &size, &freq);
 alBufferData(buffer[0],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alutLoadWAVFile("a.wav", &format, &data, &size, &freq);
 alBufferData(buffer[1],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alGetError(); /* clear error */
 alGenSources(NUM_SOURCES, source);

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating sources !!\n");
 exit(2);
 }
 else
 {
 printf("init - no errors after alGenSources\n");
 }

 alSourcef(source[0],AL_PITCH,1.0f);
 alSourcef(source[0],AL_GAIN,1.0f);

80

 alSourcefv(source[0],AL_POSITION,source0Pos);
 alSourcefv(source[0],AL_VELOCITY,source0Vel);
 alSourcei(source[0],AL_BUFFER,buffer[0]);
 alSourcei(source[0],AL_LOOPING,AL_TRUE);

 alSourcef(source[1],AL_PITCH,1.0f);
 alSourcef(source[1],AL_GAIN,1.0f);
 alSourcefv(source[1],AL_POSITION,source1Pos);
 alSourcefv(source[1],AL_VELOCITY,source1Vel);
 alSourcei(source[1],AL_BUFFER,buffer[1]);
 alSourcei(source[1],AL_LOOPING,AL_TRUE);

}

81

// ===
// openal_win.h
// Windows version to load in sound
// ===

// ===
// void openal_init()
// ===
void openal_init(void)
{
 char al_bool;

 alListenerfv(AL_POSITION,listenerPos);
 alListenerfv(AL_VELOCITY,listenerVel);
 alListenerfv(AL_ORIENTATION,listenerOri);

 alGetError(); // clear any error messages

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating buffers !!\n");
 exit(1);
 }
 else
 {
 printf("init() - No errors yet.\n");
 }

 // Generate buffers, or else no sound will happen
 alGenBuffers(NUM_BUFFERS, buffer);

 alutLoadWAVFile("Footsteps.wav", &format, &data, &size, &freq,
 &al_bool);

 alBufferData(buffer[0],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alutLoadWAVFile("a.wav", &format, &data, &size, &freq, &al_bool);
 alBufferData(buffer[1],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alGetError(); /* clear error */
 alGenSources(NUM_SOURCES, source);

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating sources !!\n");
 exit(2);
 }
 else
 {
 printf("init - no errors after alGenSources\n");
 }

82

 alSourcef(source[0],AL_PITCH,1.0f);
 alSourcef(source[0],AL_GAIN,1.0f);
 alSourcefv(source[0],AL_POSITION,source0Pos);
 alSourcefv(source[0],AL_VELOCITY,source0Vel);
 alSourcei(source[0],AL_BUFFER,buffer[0]);
 alSourcei(source[0],AL_LOOPING,AL_TRUE);

 alSourcef(source[1],AL_PITCH,1.0f);
 alSourcef(source[1],AL_GAIN,1.0f);
 alSourcefv(source[1],AL_POSITION,source1Pos);
 alSourcefv(source[1],AL_VELOCITY,source1Vel);
 alSourcei(source[1],AL_BUFFER,buffer[1]);
 alSourcei(source[1],AL_LOOPING,AL_TRUE);

}

83

// ===
// get_random.h
// Random number generator
// ===

#include <stdlib.h>
#include <time.h>

int get_random(int low, int high)
{
 static int seeded = 0;
 int value;

 if (seeded == 0)
 {
 srand((unsigned)time((time_t *)NULL));
 seeded = 1;
 }

 value = rand()%(high - low + 1) + low;

 return (value);
}

84

// ===
// Vector3D.h
// 3-dimensional vector class
// ===

#include <math.h>

class Vector3D
{
 public:

 float x, y, z;

 // constructors and destructors
 Vector3D() {}
 Vector3D(const float fx,const float fy,const float fz)

 { x=fx; y=fy; z=fz; }
 ~Vector3D() {}

 // set and get methods
 void setVector(float, float, float);
 Vector3D vector();

 // vector operations
 Vector3D operator+(const Vector3D & v)

 { return Vector3D(x+v.x,y+v.y,z+v.z); }
 Vector3D operator-(const Vector3D & v)

{ return Vector3D(x-v.x,y-v.y,z-v.z); }
 Vector3D operator*(const Vector3D & v)

{ return Vector3D(x*v.x,y*v.y,z*v.z); }
 Vector3D operator/(const Vector3D & v)

{ return Vector3D(x/v.x,y/v.y,z/v.z); }
 Vector3D operator*(const float f)

{ return Vector3D(x*f, y*f, z*f); }
 Vector3D operator/(const float f)

{ return Vector3D(x/f, y/f, z/f); }

 Vector3D operator-() { return Vector3D(-x,-y,-z); }

 Vector3D operator+=(const Vector3D & v)
{ *this = *this + v; return *this; }

 // vector mathematical functions
 void crossProduct(Vector3D, Vector3D);
 float dotProduct(Vector3D &, Vector3D &);
 float dotProduct(Vector3D &);
 void normalize();

 float vectorMagnitude()
{ return (float)sqrt(x*x + y*y + z*z); }

 void printComponents();

};

85

// ===
// void setVector(float new_x, float new_y, float new_z)
// ===
void Vector3D :: setVector(float new_x, float new_y, float new_z)
{
 x = new_x;
 y = new_y;
 z = new_z;
}

// ===
// Vector3D vector()
// ===
Vector3D Vector3D :: vector()
{
 return (Vector3D(x, y, z));
}

// ===
// void crossProduct(Vector3D v1, Vector3D v2)
// ===
void Vector3D :: crossProduct(Vector3D v1, Vector3D v2)
{

x = (v1.y * v2.z) - (v1.z * v2.y);
y = (v1.z * v2.x) - (v1.x * v2.z);
z = (v1.x * v2.y) - (v1.y * v2.x);

}

// ===
// float dotProduct(Vector3D & v1, Vector3D & v2)
// ===
float Vector3D :: dotProduct(Vector3D & v1, Vector3D & v2)
{

return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
}

// ===
// float dotProduct(Vector3D & v2)
// ===
float Vector3D :: dotProduct(Vector3D & v2)
{
 return (x*v2.x + y*v2.y + z*v2.z);
}

// ===
// void normalize
// ===
void Vector3D :: normalize()

86

{
float len = vectorMagnitude();

 // if the vector has no magnitude (0), then
 // return since normalizing a 0 vector will
 // result in an error by trying to divide by 0.

if (len == 0) return;

len = 1.0f/len;

x *= len;
y *= len;
z *= len;

}

// ===
// void printComponents()
// ===
void Vector3D :: printComponents()
{
 cout << "x: " << x << " y: " << y << " z: " << z << endl;
}

87

APPENDIX B

OPENAL SOURCE CODE

88

// ===
// openal-example.cpp
// ===

// ===
// Include libraires and files
// Below are the three standard library headers for Mac OS X. For
// Linux or Windows, change the libraries such:
// #include <GL/glut.h>
// #include <AL/alut.h>
// Depending on your system configuration, you might need to also
// include these libraries:
// #include <AL/al.h>
// #include <GL/gl.h>
// #include <GL/glu.h>
// ===
#include <stdio.h>
#include <GLUT/glut.h>
#include <OpenAL/alut.h>

// ===
// Function prototypes
// ===
void init();
void display();
void reshape(int w, int h);
void keyboard(unsigned char key, int x, int y);
void specialKeys(int key, int x, int y);

// ===
// Global variables
// ===
#define NUM_BUFFERS 3
#define NUM_SOURCES 3
#define NUM_ENVIRONMENTS 1

ALfloat listenerPos[]={0.0,0.0,4.0};
ALfloat listenerVel[]={0.0,0.0,0.0};
ALfloat listenerOri[]={0.0,0.0,1.0, 0.0,1.0,0.0};

ALfloat source0Pos[]={ -2.0, 0.0, 0.0};
ALfloat source0Vel[]={ 0.0, 0.0, 0.0};

ALfloat source1Pos[]={ 2.0, 0.0, 0.0};
ALfloat source1Vel[]={ 0.0, 0.0, 0.0};

ALfloat source2Pos[]={ 0.0, 0.0, -4.0};
ALfloat source2Vel[]={ 0.0, 0.0, 0.0};

ALuint buffer[NUM_BUFFERS];
ALuint source[NUM_SOURCES];
ALuint environment[NUM_ENVIRONMENTS];

89

int GLwin;

ALsizei size,freq;
ALenum format;
ALvoid *data;
int ch;

// ===
// void main(int argc, char** argv)
// ===
int main(int argc, char** argv) //finaly the main function
{

//initialise glut
glutInit(&argc, argv) ;
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) ;
glutInitWindowSize(400,400) ;

//initialise openAL
alutInit(&argc, argv) ;

GLwin = glutCreateWindow("PIGE - OpenAL Example") ;
init() ;
glutDisplayFunc(display) ;
glutKeyboardFunc(keyboard) ;

 glutSpecialFunc(specialKeys);
glutReshapeFunc(reshape) ;

glutMainLoop() ;

return 0;
}

// ===
// void init()
// ===
void init(void)
{
 alListenerfv(AL_POSITION,listenerPos);
 alListenerfv(AL_VELOCITY,listenerVel);
 alListenerfv(AL_ORIENTATION,listenerOri);

 alGetError(); // clear any error messages

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating buffers !!\n");
 exit(1);
 }
 else
 {
 printf("init() - No errors yet.");
 }

 // Generate buffers, or else no sound will happen!

90

 alGenBuffers(NUM_BUFFERS, buffer);

 alutLoadWAVFile("c.wav",&format,&data,&size,&freq);
 alBufferData(buffer[0],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alutLoadWAVFile("b.wav",&format,&data,&size,&freq);
 alBufferData(buffer[1],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alutLoadWAVFile("a.wav",&format,&data,&size,&freq);
 alBufferData(buffer[2],format,data,size,freq);
 alutUnloadWAV(format,data,size,freq);

 alGetError(); /* clear error */
 alGenSources(NUM_SOURCES, source);

 if(alGetError() != AL_NO_ERROR)
 {
 printf("- Error creating sources !!\n");
 exit(2);
 }
 else
 {
 printf("init - no errors after alGenSources\n");
 }

 alSourcef(source[0],AL_PITCH,1.0f);
 alSourcef(source[0],AL_GAIN,1.0f);
 alSourcefv(source[0],AL_POSITION,source0Pos);
 alSourcefv(source[0],AL_VELOCITY,source0Vel);
 alSourcei(source[0],AL_BUFFER,buffer[0]);
 alSourcei(source[0],AL_LOOPING,AL_TRUE);

 alSourcef(source[1],AL_PITCH,1.0f);
 alSourcef(source[1],AL_GAIN,1.0f);
 alSourcefv(source[1],AL_POSITION,source1Pos);
 alSourcefv(source[1],AL_VELOCITY,source1Vel);
 alSourcei(source[1],AL_BUFFER,buffer[1]);
 alSourcei(source[1],AL_LOOPING,AL_TRUE);

 alSourcef(source[2],AL_PITCH,1.0f);
 alSourcef(source[2],AL_GAIN,1.0f);
 alSourcefv(source[2],AL_POSITION,source2Pos);
 alSourcefv(source[2],AL_VELOCITY,source2Vel);
 alSourcei(source[2],AL_BUFFER,buffer[2]);
 alSourcei(source[2],AL_LOOPING,AL_TRUE);
}

// ===
// void display()
// ===
void display(void)

91

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

 glPushMatrix() ;
glRotatef(20.0,1.0,1.0,0.0) ;

glPushMatrix() ;
glTranslatef(source0Pos[0],source0Pos[1],source0Pos[2]) ;
glColor3f(1.0,0.0,0.0) ;
glutWireCube(0.5) ;
glPopMatrix() ;

glPushMatrix() ;
glTranslatef(source2Pos[0],source2Pos[1],source2Pos[2]) ;
glColor3f(0.0,0.0,1.0) ;
glutWireCube(0.5) ;
glPopMatrix() ;

glPushMatrix() ;
glTranslatef(source1Pos[0],source0Pos[1],source0Pos[2]) ;
glColor3f(0.0,1.0,0.0) ;
glutWireCube(0.5) ;
glPopMatrix() ;

//the listener
glPushMatrix() ;
glTranslatef(listenerPos[0],listenerPos[1],listenerPos[2]) ;

 glColor3f(1.0,1.0,1.0) ;
glutWireCube(0.5) ;
glPopMatrix() ;

 glPopMatrix() ;
glutSwapBuffers() ;

}

// ===
// void reshape(int w, int h)
// ===
void reshape(int w, int h) // the reshape function
{
 glViewport(0,0,(GLsizei)w,(GLsizei)h) ;
 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 gluPerspective(60.0,(GLfloat)w/(GLfloat)h,1.0,30.0) ;
 glMatrixMode(GL_MODELVIEW) ;
 glLoadIdentity() ;
 glTranslatef(0.0,0.0,-6.6) ;
}

// ===
// void keyboard(int key, int x, int y)
// ===
void keyboard(unsigned char key, int x, int y)
{

92

switch(key)
{

case '1':
alSourcePlay(source[0]);

 printf("1\n");
break;

case '2':
alSourcePlay(source[1]);

 printf("2\n");
break;

case '3':
alSourcePlay(source[2]);

 printf("3\n");
break;

case '4':
alSourceStop(source[0]);

 printf("4\n");
break;

case '5':
alSourceStop(source[1]);

 printf("5\n");
break;

case '6':
alSourceStop(source[2]);

 printf("6\n");
break;

case 'a':
case 'A':

listenerPos[0] -= 0.1 ;
alListenerfv(AL_POSITION,listenerPos);

break ;
case 's':
case 'S':

listenerPos[0] += 0.1 ;
alListenerfv(AL_POSITION,listenerPos);

break ;
case 'q':
case 'Q':

listenerPos[2] -= 0.1 ;
alListenerfv(AL_POSITION,listenerPos);

break ;
case 'z':
case 'Z':

listenerPos[2] += 0.1 ;
alListenerfv(AL_POSITION,listenerPos);

break ;
case 27:

alSourceStop(source[2]);
alSourceStop(source[1]);
alSourceStop(source[0]);

93

alutExit();
glutDestroyWindow(GLwin) ;
exit(0) ;
break ;

 default: break;
}
glutPostRedisplay() ;

}

// ===
// void specialKeys(int key, int x, int y)
// ===
void specialKeys(int key, int x, int y)
{
 switch(key)
 {
 case GLUT_KEY_RIGHT: listenerPos[0] += 0.1 ;
 alListenerfv(AL_POSITION,listenerPos);
 glutPostRedisplay() ;
 break;
 case GLUT_KEY_LEFT: listenerPos[0] -= 0.1 ;
 alListenerfv(AL_POSITION,listenerPos);
 glutPostRedisplay() ;
 break;
 case GLUT_KEY_UP: listenerPos[2] -= 0.1 ;
 alListenerfv(AL_POSITION,listenerPos);
 glutPostRedisplay() ;
 break;
 case GLUT_KEY_DOWN: listenerPos[2] += 0.1 ;
 alListenerfv(AL_POSITION,listenerPos);
 glutPostRedisplay() ;
 break;
 }
}

94

APPENDIX C

TEXTURE SOURCE CODE

95

// ===
// texture.c
// ===

// ===
// Include libraires and files
// ---
// For Windows & Linux systems, comment out the <GLUT/glut.h>
// header and uncomment the other three GL headers.
// ===
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "math.h"

#include <GLUT/glut.h>
//#include <GL/gl.h>
//#include <GL/glu.h>
//#include <GL/glut.h>

// ===
// Constants and global variables
// ---
// For Windows & Linux systems, the texture[1] needs to be of type
// unsigned int.
// ===
#define kWindowWidth 512
#define kWindowHeight 256

unsigned long texture[1]; // Texture storage

GLfloat xrot; // X rotation
GLfloat yrot; // Y rotation
GLfloat zrot; // Z rotation

// ===
// TGAImageRect
// ===
typedef struct TGAImageRec
{
 GLubyte *data; // Image data (up to 32 bits)
 GLuint bpp; // Image color depth in Bits Per Pixel.
 GLuint sizeX;
 GLuint sizeY;
} TGAImageRec;

// ===
// Function prototypes
// ===
GLvoid InitGL(GLvoid);
GLvoid Display(GLvoid);

96

GLvoid ResizeGLScene(int Width, int Height);
GLvoid Keyboard(unsigned char key, int x, int y);
GLvoid Idle(GLvoid);
GLvoid LoadGLTextures(GLvoid);
TGAImageRec* LoadTGA(char *filename);

// ===
// Main
// ===
int main(int argc, char** argv)
{

 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(kWindowWidth, kWindowHeight);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);

 InitGL();

 glutKeyboardFunc(Keyboard);
 glutDisplayFunc(Display);
 glutReshapeFunc(ResizeGLScene);
 glutIdleFunc(Idle);

 xrot = 0;
 yrot = 0;
 zrot = 0;

 glutMainLoop();

 return 0;
}

// ===
// InitGL
// ===
GLvoid InitGL(GLvoid)
{

 LoadGLTextures(); // Load the texture(s)
 glEnable(GL_TEXTURE_2D); // Enable texture mapping

 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 // This will clear the background color to black
 glClearDepth(1.0); // Enables Clearing Of The

// Depth Buffer
 glDepthFunc(GL_LESS); // Type of depth test to do
 glEnable(GL_DEPTH_TEST); // Enables depth testing
 glShadeModel(GL_SMOOTH); // Enables smooth color

// shading

97

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity(); // Reset The Projection Matrix

 gluPerspective(45.0f, (GLfloat) kWindowWidth / (GLfloat)
 kWindowHeight, 0.1f, 100.0f);
 // Calculate The Aspect Ratio Of The Window

 glMatrixMode(GL_MODELVIEW);

}

// ===
// Keyboard
// ===
GLvoid Keyboard(unsigned char key, int x, int y)
{
 switch(key)
 {

case 27: exit(0); break;
default: printf("x: %d y: %d\n", x, y);

 }
}

// ===
// Idle
// ===
GLvoid Idle(GLvoid)
{
 xrot += 0.3f; // X Axis Rotation
 yrot += 0.2f; // Y Axis Rotation
 zrot += 0.4f; // Z Axis Rotation

 glutPostRedisplay();
}

// ===
// Display
// ===
GLvoid Display(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();
 glTranslatef(0.0f,0.0f,-5.0f);

 glRotatef(xrot,1.0f,0.0f,0.0f); // Rotate on the X axis
 glRotatef(yrot,0.0f,1.0f,0.0f); // Rotate on the Y axis
 glRotatef(zrot,0.0f,0.0f,1.0f); // Rotate on the Z axis

 glBindTexture(GL_TEXTURE_2D, texture[0]);

 glBegin(GL_QUADS);

98

// Front Face
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);

 // Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);

 // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);

 // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);

 // Top Left Of The Texture and Quad

// Back Face
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);

 // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);

 // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);

 // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);

 // Bottom Left Of The Texture and Quad

// Top Face
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);

 // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f);

 // Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f);

 // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);

 // Top Right Of The Texture and Quad

// Bottom Face
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f);

 // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, -1.0f, -1.0f);

 // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);

 // Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);

 // Bottom Right Of The Texture and Quad

// Right face
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);

 // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);

 // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);

 // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);

 // Bottom Left Of The Texture and Quad

// Left Face
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);

 // Bottom Left Of The Texture and Quad

99

glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 // Bottom Right Of The Texture and Quad

glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 // Top Right Of The Texture and Quad

glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 // Top Left Of The Texture and Quad

 glEnd();

 glutSwapBuffers();
 glFlush();
}

// ===
// ResizeGLScene
// ===
GLvoid ResizeGLScene(int Width, int Height)
{
 glViewport (0, 0, (GLsizei) Width, (GLsizei) Height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 gluPerspective(45.0, (GLfloat) Width /
 (GLfloat) Height, 0.1, 100.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

// ===
// LoadGLTextures
// ===
GLvoid LoadGLTextures(GLvoid)
{
 TGAImageRec *texture1;
 GLuint type = GL_RGBA;

 texture1 = LoadTGA("crate.tga"); // load the image

 glGenTextures(1, &texture[0]); // generate texture
 glBindTexture(GL_TEXTURE_2D, texture[0]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

 if (texture1->bpp == 24)
type = GL_RGB;

 else
type = GL_RGBA;

 glTexImage2D(GL_TEXTURE_2D, 0, type, texture1->sizeX,
texture1->sizeY, 0, type, GL_UNSIGNED_BYTE,
texture1->data);

100

}

// ===
// LoadTGA
// ===
TGAImageRec* LoadTGA(char *filename)
{
 GLubyte TGAheader[12] = {0,0,2,0,0,0,0,0,0,0,0,0};
 // Uncompressed TGA Header
 GLubyte TGAcompare[12];
 GLubyte header[6];
 GLuint bytesPerPixel;
 GLuint imageSize;
 GLuint temp; // Temporary Variable
 GLuint type = GL_RGBA;
 GLuint i;
 TGAImageRec *texture;
 FILE *file;

 file = fopen(filename, "rb"); // Open The TGA File

 if((file == NULL) || // Does File Even Exist?
 (fread(TGAcompare, 1, sizeof(TGAcompare), file) !=
 sizeof(TGAcompare)) || // Are There 12 Bytes To Read?

 (memcmp(TGAheader, TGAcompare, sizeof(TGAheader)) != 0)
|| // Does The Header Match What We Want?
(fread(header, 1, sizeof(header), file)
 != sizeof(header))) // If So Read Next 6 Header Bytes

 {
// If anything failed then close the file and return false

 printf("Couldn't open file %s\n", filename);
fclose(file);
return NULL;

 }

 // Create a new TGAImageRec
 texture = (TGAImageRec*)malloc(sizeof(TGAImageRec));

 // Determine the TGA width (highbyte*256+lowbyte) and height
 // (highbyte*256+lowbyte)
 texture->sizeX = header[1] * 256 + header[0];
 texture->sizeY = header[3] * 256 + header[2];

 // Make sure the height, width, and bit depth are valid
 if((texture->sizeX <= 0) || (texture->sizeY <= 0) ||
 ((header[4] != 24) && (header[4] != 32)))
 {

// If anything failed then close the file, free up memory for
 // the image, and return NULL

fclose(file);
free(texture);
return NULL;

101

 }

 // Grab The TGA's Bits Per Pixel (24 or 32)
 texture->bpp = header[4];
 bytesPerPixel = texture->bpp/8;
 // Divide By 8 To Get The Bytes Per Pixel

 // Calculate The Memory Required For The TGA Data
 imageSize = texture->sizeX * texture->sizeY * bytesPerPixel;

 // Reserve Memory To Hold The TGA Data
 texture->data = (GLubyte*)malloc(imageSize);

 // Make sure the right amount of memory was allocated
 if((texture->data == NULL) ||
 (fread(texture->data, 1, imageSize, file) != imageSize))
 {

// Free up the image data if there was any
if(texture->data != NULL)
 free(texture->data);

// If anything failed then close the file, free up memory for
 // the image, and return NULL

fclose(file);
free(texture);
return NULL;

 }

// Loop Through The Image Data
 for(i = 0; i < (int) imageSize; i += bytesPerPixel)
 {

// Swaps The 1st And 3rd Bytes ('R'ed and 'B'lue)
temp = texture->data[i];

 // Temporarily Store The Value At Image Data 'i'
texture->data[i] = texture->data[i + 2];

 // Set The 1st Byte To The Value Of The 3rd Byte
texture->data[i + 2] = temp;

 // Set The 3rd Byte To The Value In 'temp' (1st Byte Value)
 }

 fclose(file); // Close the file

 return texture;
}

